Кулон (единица измерения)
Куло́н (обозначение: Кл, C) — единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ).
Кулон равен количеству электричества, проходящего через поперечное сечение проводника при силе тока 1 А за время 1 с.
Элементарный заряд (заряд электрона) равен −1,60217653(14)·10 −19 Кл.
Кратные и дольные единицы
Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.
Кратные | Дольные | ||||||
---|---|---|---|---|---|---|---|
величина | название | обозначение | величина | название | обозначение | ||
10 1 Кл | декакулон | даКл | daC | 10 −1 Кл | децикулон | дКл | dC |
10 2 Кл | гектокулон | гКл | hC | 10 −2 Кл | сантикулон | сКл | cC |
10 3 Кл | килокулон | кКл | kC | 10 −3 Кл | милликулон | мКл | mC |
10 6 Кл | мегакулон | МКл | MC | 10 −6 Кл | микрокулон | мкКл | µC |
10 9 Кл | гигакулон | ГКл | GC | 10 −9 Кл | нанокулон | нКл | nC |
10 12 Кл | теракулон | ТКл | TC | 10 −12 Кл | пикокулон | пКл | pC |
10 15 Кл | петакулон | ПКл | PC | 10 −15 Кл | фемтокулон | фКл | fC |
10 18 Кл | эксакулон | ЭКл | EC | 10 −18 Кл | аттокулон | аКл | aC |
10 21 Кл | зеттакулон | ЗКл | ZC | 10 −21 Кл | зептокулон | зКл | zC |
10 24 Кл | йоттакулон | ИКл | YC | 10 −24 Кл | йоктокулон | иКл | yC |
применять не рекомендуется |
Единицы СИ |
---|
Основные: метр | килограмм | секунда | ампер | кельвин | кандела | моль |
Производные: радиан | стерадиан | герц | градус Цельсия | катал | ньютон | джоуль | ватт | паскаль | кулон | вольт | ом | сименс | фарад | вебер | тесла | генри | люмен | люкс | беккерель | грэй | зиверт |
Полезное
Смотреть что такое «Кулон (единица измерения)» в других словарях:
Единица измерения Сименс — Сименс (обозначение: См, S) единица измерения электрической проводимости в системе СИ, величина обратная ому. До Второй мировой войны (в СССР до 1960 х годов) сименсом называлась единица электрического сопротивления, соответсвующая сопротивлению … Википедия
Зиверт (единица измерения) — Зиверт (обозначение: Зв, Sv) единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется с 1979 г. 1 зиверт это количество энергии, поглощённое килограммом… … Википедия
Беккерель (единица измерения) — У этого термина существуют и другие значения, см. Беккерель. Беккерель (обозначение: Бк, Bq) единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в… … Википедия
Вольт (единица измерения) — Вольт (обозначение: В (рус.), V (лат.)) единица измерения электрического напряжения в системе СИ. Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. Единица названа в честь… … Википедия
Фарад (единица измерения) — Фарад (обозначение: Ф, F) единица измерения электрической ёмкости в системе СИ (ранее называлась фарада). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф =… … Википедия
Ньютон (единица измерения) — У этого термина существуют и другие значения, см. Ньютон. Ньютон (обозначение: Н) единица измерения силы в Международной системе единиц (СИ). Принятое международное название newton (обозначение: N). Ньютон производная единица. Исходя из второго… … Википедия
Сименс (единица измерения) — У этого термина существуют и другие значения, см. Сименс. Сименс (русское обозначение: См; международное обозначение: S) единица измерения электрической проводимости в Международной системе единиц (СИ), величина обратная ому. Через другие… … Википедия
Паскаль (единица измерения) — У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия
Тесла (единица измерения) — У этого термина существуют и другие значения, см. Тесла. Тесла (русское обозначение: Тл; международное обозначение: T) единица измерения индукции магнитного поля в Международной системе единиц (СИ), численно равная индукции такого… … Википедия
Грей (единица измерения) — У этого термина существуют и другие значения, см. Грей. Грей (обозначение: Гр, Gy) единица измерения поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Поглощённая доза равна одному грею, если в результате… … Википедия
Электрический заряд
Классическая электродинамика | ||||||||||||
Электричество · Магнетизм | ||||||||||||
| ||||||||||||
См. также: Портал:Физика |
Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.
Содержание
История
Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.
В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.
В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда
Электростатика
Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.
Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.
Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.
Взаимодействие зарядов
При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.
При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.
Закон сохранения электрического заряда
Электрический заряд замкнутой системы [5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.
В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.
Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.
Свободные заряды
В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.
Измерение
Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.
Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.
Единицы измерения заряда. Закон Кулона
В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш. Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:
Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.
Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.
В векторной форме закон Кулона будет иметь вид:
Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.
Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.
Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.
В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.
Коэффициент k в формуле 1а) в СИ принимается равным:
И закон Кулона можно будет записать в так называемой «рационализированной» форме:
Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.
Величина ε0 в данной формуле – электрическая постоянная.
Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:
Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГСq. Ее размерность:
Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):
В СГС данная сила будет равна:
Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.
Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.
Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).
Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:
Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:
Поделив выражение (6) на (5) получим:
Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.
Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.
В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.
Закон Кулона в системе СГС будет иметь вид:
Пример
На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.
Решение
Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:
Где е – положительный заряд капли масла, равный заряду электрона.
Силу ньютоновского притяжения можно выразить формулой:
Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи Fк = Fн, поэтому:
Единица электрического заряда?
Кулон, единица электрического заряда в системе метр-килограмм-секунда-ампер, основа системы физических единиц СИ. Он обозначается аббревиатурой C. Кулон определяется как количество электричества, переносимое за одну секунду током в один ампер.
Следовательно, как вы рассчитываете электрическое время?
Электрическая энергия = мощность x время. Общее количество используемой электроэнергии зависит от общей мощности, используемой всеми вашими электрическими устройствами, и общего времени, в течение которого они используются в вашем доме. Один киловатт-час равен 1000 ватт энергии, используемой в течение одного часа времени.
Тогда какие два типа электрического заряда?
Электрические заряды бывают двух основных типов: положительный и отрицательный. … Например, электроны имеют отрицательный заряд, а протоны имеют положительный заряд, а нейтроны имеют нулевой заряд.
Кроме того, что такое единица измерения электрического потока в системе СИ?
Что такое единица СИ для разности потенциалов?
Единицы измерения разности потенциалов: джоули на кулон, названный вольт (V) в честь Алессандро Вольта.
Сколько кВтч в день нормально?
По данным EIA, в 2017 году среднегодовое потребление электроэнергии потребителем жилого дома в США составляло 10,399 киловатт-часов (кВтч), в среднем 867 кВтч в месяц. Это означает, что среднее потребление электроэнергии в домохозяйстве кВтч в день составляет 28.9 кВтч (867 кВтч / 30 дней).
По какой формуле рассчитывается проделанная работа?
Часто задаваемые вопросы о формуле для работы
Математически концепция проделанной работы W равна силе f, умноженной на расстояние (d), то есть W = f. d и если сила приложена под углом θ к смещению, то проделанная работа рассчитывается как W = f.
Какие бывают 3 типа электрических зарядов?
Какие бывают 4 типа электричества?
Какие бывают 3 типа электричества?
Электрический поток равен заряду?
Суммарный электрический поток, исходящий от замкнутой поверхности, равен равно приложенному заряду, деленному на диэлектрическую проницаемость. Электрический поток через площадь определяется как электрическое поле, умноженное на площадь поверхности, проецируемую в плоскости, перпендикулярной полю.
Как измеряется электрический поток?
Знайте формулу электрического потока.
Что такое единица измерения потенциального заряда в системе СИ?
Как рассчитывается разность потенциалов?
Умножьте величину тока на величину сопротивления в цепи. Результатом умножения будет разность потенциалов, измеренная в вольтах. Эта формула известна как Закон Ома, V = IR.
Что такое электрический потенциал и его единица?
Как вы рассчитываете кВт / ч в день?
Один киловатт равен 1,000 ватт, поэтому, чтобы рассчитать количество киловатт-часов в день, которое потребляет ваш холодильник, вам просто нужно: разделите количество ватт-часов в день (7,200) на 1,000 всего 7.2 кВтч в день.
Сколько электроэнергии потребляет дом с 5 спальнями?
В доме пять спален и используются 18,000 кВт / ч газа и 4,600 кВт / ч электроэнергии.
Как я могу рассчитать вес?
Какова формула времени и труда?
Важная формула времени и работы
Работа выполнена = Затраченное время × Скорость работы. Скорость работы = 1 / Затраченное время. Затраченное время = 1 / Скорость работы. Если работа выполняется за x дней, то работа, выполненная за один день, = 1 / x.
Какая сейчас формула?
Что такое отрицательный заряд?
Что вы называете отрицательным зарядом?
Ион, любой атом или группа атомов, несущие один или несколько положительных или отрицательных электрических зарядов. Положительно заряженные ионы называются катионами; отрицательно заряженные ионы, анионы.
Что не имеет электрического заряда?
Атом состоит из трех типов субатомных частиц: электронов, протонов и нейтронов. Атом имеет равное количество электронов и протонов, и поэтому электрически нейтральный (т.е. не имеет электрического заряда).