Круговорот азота в природе
Всего получено оценок: 381.
Всего получено оценок: 381.
Азот – один из жизненно важных элементов. Азот не фиксируется в организме в свободном виде. Поэтому в круговороте азота в природе помогают бактерии.
Общее описание
Азот – седьмой элемент периодической таблицы Менделеева. Проявляет две валентности – III и V. В природе это двухатомный газ (N2), плохо растворимый в воде. За счёт прочной тройной связи между атомами азот является малоактивным веществом, вступающим в реакции только при нагревании или под действием катализатора.
Рис. 1. Строение молекулы азота.
Элемент присутствует в почве, воде, живых организмах в составе сложных веществ. Свободный азот относительно стабилен в атмосфере, его содержание – 78 % от общего объёма газов. Азот может принимать жидкую и твёрдую формы.
Элемент входит в состав аминокислот и белков, нуклеиновых кислот. Без азота невозможно построение ДНК.
Круговорот
Схему круговорота азота в природе условно можно разделить на две части – грунтовую и атмосферную. Круговорот азота через почву осуществляется следующим образом:
В атмосферу азот также попадает в результате гниения или при горении органических веществ, например, дров или торфа. Под действием разрядов молнии азот соединяется с кислородом, образуя оксид азота (II) – NO, а затем оксид азота (IV) – NO2.
Кроме того, свободный азот способны усваивать азотфиксирующие бактерии и некоторые виды сине-зеленых водорослей. Азотфиксирующие бактерии (азотфиксаторы) находятся в симбиозе с растениями. Например, клубеньковые бактерии живут на корнях бобовых растений. Азотфиксаторы могут усваивать азот в присутствии или в отсутствии кислорода, т.е. могут являться аэробами или анаэробами. Они также синтезируют нитраты.
Рис. 2. Азотфиксирующие бактерии на клубнях.
Растения могут усваивать азот только в составе солей азотной кислоты. Вместе с листьями азот попадает сначала в организм травоядных животных (консументов первого порядка), а затем – хищных животных (консументов второго порядка). Обратно азот возвращается при гниении и в составе мочевины (CH4N2O).
Рис. 3. Схема круговорота азота в природе.
Часть нитратов окисляется специальными денитрифицирующими бактериями до свободного азота, который возвращается в атмосферу. Процесс восстановления свободного азота из сложных соединений называется денитрификацией.
Что мы узнали?
Рассмотрели описание круговорота азота в природе. Азот – важный элемент, необходимый живым организмам для постройки тканей и синтеза ДНК. Свободный азот плохо вступает в реакции за счёт прочных тройных связей. Поэтому в усвоении азота помогают бактерии, синтезируя аммиак, азотную кислоту, нитраты. В составе солей азот попадает в растения и далее по пищевой цепочке в организмы травоядных и хищных животных. Новый цикл начинается при отмирании и разложении живых организмов.
Круговорот азота в природе: схема, описание, последовательность, значение и факты
Азот (N, лат. nitrogenium) – это один из наиболее распространенных элементов на планете, который циркулирует через нас, животных, растения и другие живые организмы. В этой статье мы не только рассмотрим круговорот азота в природе, но и поделимся некоторыми фактами об этом элементе!
Определение
Круговорот азота – непрерывная последовательность естественных процессов, в результате которых азот последовательно переходит из атмосферы в почву к живым организмам и обратно в воздух или почву, посредством таких процессов, как азотофиксация, нитрификация, разложение и денитрификация.
А теперь давайте рассмотрим все вышесказанное на примере из нашей жизни. Когда вы откусываете свой аппетитный бутерброд с индейкой, салатом и помидорами, вы, вероятно, не думаете о том, что, хотя атомы азота из этой пищи раньше были в коровьих фекалиях, она все равно имеет восхитительный вкус!
Извините, если испортили ваш обед, но эти атомы азота – настоящие туристы, посещающие воздух, микроорганизмы, растения, животных и почву через биогеохимический цикл азота или круговорот азота на Земле. Давайте проследим за некоторыми атомами азота через азотный цикл, чтобы увидеть, куда они направляются!
Этапы круговорота в природе
Вы окружены азотом! Фактически, 78% воздуха, которым вы дышите – это азот, но как он из воздуха попадает в ваш бутерброд? Хороший вопрос! Вот последовательность этапов, которые атом азота совершает в своем путешествии по азотному циклу:
1 Начнем с воздуха, которым вы дышите. Когда азот находится в воздухе, он называется атмосферным азотом и поступает в виде N2 (молекула азота из двух атомов). Растения мало что могут сделать с атмосферным азотом. Но в почве есть микроорганизмы-азотфиксаторы, которые могут преобразовывать азот в пригодную для использования растениями форму с помощью процесса, называемого азотфиксацией. Давайте рассмотрим, как происходит фиксация азота:
2 Бактерии и археи в почве превращают аммоний в нитриты (NO2-), а затем в нитраты (NO3-) посредством нитрификации, которая, по сути, заключается в том, что бактерии превращают аммоний в нитраты. Нитраты – это азот, присоединенный к атомам кислорода.
3 Теперь, когда атмосферный азот был заменен на нитраты, давайте посмотрим, что будет дальше. Ассимиляция – это когда растения используют азот для самых разных целей, таких как строительство листьев или создание ДНК (дезоксирибонуклеиновая кислота). Животные и другие организмы поедают растения, и азот также попадает в их тела.
5 Специальные бактерии могут превращать нитраты обратно в атмосферный азот посредством процесса, называемого денитрификацией, когда азот из почвы снова попадает в атмосферу. И вы снова на шаге 1!
Так как же атомы азота попали в ваш бутерброд с индейкой? Азот из воздуха был превращен в азот, который могли использовать растения, например салат и помидоры на вашем бутерброде. Однажды индейка съела несколько растений, и азот попал в ее тело. Но до того, как все это произошло, тот же самый атом азота был съеден коровой и возвращен в почву виде фекалий, где его использовали растения, которые съела индейка!
Факты об азоте
Азотный цикл происходит непрерывно, когда вы сидите и читаете эту статью, и без него в вашем теле не было бы азота (и это очень прискорбно… вы не смогли бы жить без него). Давайте посмотрим на некоторые удивительные факты об азоте и его круговороте в природе:
Круговорот азота в природе – схема и описание
Азот – один из жизненно важных элементов. Азот не фиксируется в организме в свободном виде. Поэтому в круговороте азота в природе помогают бактерии.
Общее описание
Азот – седьмой элемент периодической таблицы Менделеева. Проявляет две валентности – III и V. В природе это двухатомный газ (N2), плохо растворимый в воде. За счёт прочной тройной связи между атомами азот является малоактивным веществом, вступающим в реакции только при нагревании или под действием катализатора.
Рис. 1. Строение молекулы азота.
Элемент присутствует в почве, воде, живых организмах в составе сложных веществ. Свободный азот относительно стабилен в атмосфере, его содержание – 78 % от общего объёма газов. Азот может принимать жидкую и твёрдую формы.
Элемент входит в состав аминокислот и белков, нуклеиновых кислот. Без азота невозможно построение ДНК.
Круговорот
Схему круговорота азота в природе условно можно разделить на две части – грунтовую и атмосферную. Круговорот азота через почву осуществляется следующим образом:
В атмосферу азот также попадает в результате гниения или при горении органических веществ, например, дров или торфа. Под действием разрядов молнии азот соединяется с кислородом, образуя оксид азота (II) – NO, а затем оксид азота (IV) – NO2.
Оксиды реагируют с водой, образуя азотную кислоту. Она попадает в почву вместе с дождями, где образуются нитраты.
Кроме того, свободный азот способны усваивать азотфиксирующие бактерии и некоторые виды сине-зеленых водорослей. Азотфиксирующие бактерии (азотфиксаторы) находятся в симбиозе с растениями. Например, клубеньковые бактерии живут на корнях бобовых растений. Азотфиксаторы могут усваивать азот в присутствии или в отсутствии кислорода, т.е. могут являться аэробами или анаэробами. Они также синтезируют нитраты.
Рис. 2. Азотфиксирующие бактерии на клубнях.
Растения могут усваивать азот только в составе солей азотной кислоты. Вместе с листьями азот попадает сначала в организм травоядных животных (консументов первого порядка), а затем – хищных животных (консументов второго порядка). Обратно азот возвращается при гниении и в составе мочевины (CH4N2O).
Рис. 3. Схема круговорота азота в природе.
Часть нитратов окисляется специальными денитрифицирующими бактериями до свободного азота, который возвращается в атмосферу. Процесс восстановления свободного азота из сложных соединений называется денитрификацией.
Что мы узнали?
Рассмотрели описание круговорота азота в природе. Азот – важный элемент, необходимый живым организмам для постройки тканей и синтеза ДНК. Свободный азот плохо вступает в реакции за счёт прочных тройных связей. Поэтому в усвоении азота помогают бактерии, синтезируя аммиак, азотную кислоту, нитраты. В составе солей азот попадает в растения и далее по пищевой цепочке в организмы травоядных и хищных животных. Новый цикл начинается при отмирании и разложении живых организмов.
Значение круговорота N2 для биосферы
Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде. В результате различных геологических процессов этот элемент принимает ту форму, которой могут воспользоваться организмы. Обмен элементами между живыми существами, воздухом, водой и земной корой получил название биогеохимических циклов.
Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.
N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.
Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.
Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.
Связывание или фиксация происходит тремя способами:
Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями. При помощи специального фермента бактерии фиксируют атмосферный азот, синтезируя аммиак и нитраты. Получается взаимовыгодное существование. Микроорганизмы обеспечивают растения азотом, а растения питают бактерии сахарами.
Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.
Этапы круговорота атмосферного азота
Для того чтобы кратко описать и понять этот процесс, нужно представить биосферу, как два соединяющихся сосуда разных размеров. В большом находится вещество из воздуха и воды, в маленьком — элементы, участвующие в жизнедеятельности организмов. В трубке, которая их соединяет — переходящий в разные состояния азот. Так в живой природе происходит его поступление в организм.
Процесс круговорота очень медленный. Он имеет определённую последовательность:
Азот в живой природе
Роль азота в природе ещё не изучена до конца. Любая экологическая система усваивает небольшое количество вещества. Поэтому при производстве удобрений нарушается баланс между газом из органических соединений, вернувшимся в атмосферу, и элементами из воздушной среды.
Было отмечено, что его состояние может переходить из техногенного потока в природный. Лишнее количество газа накапливается в природе и вызывает отрицательные последствия. Выявлена закономерная связь между сельским хозяйством, например, применением различных добавок, и загрязнением окружающей среды.
Приблизительно 36% азота, который проникает в землю с удобрениями, просачивается в сточные воды. В них оказывается большое количество нитратов азота, которые, попадая в реки и озёра, вызывают усиленное размножение растений.
Этот процесс получил название эвтрофикация, то есть загрязнение водных ресурсов водорослями. Это одно из самых важных экологических последствий в применении этого вещества. Молекулы служат питательной средой для водяных растений. Путём накапливания они разрастаются очень быстро, затемняют водоём и не дают развиваться другим растениям. Со временем водоросли отмирают. Для их разложения необходимо очень большое количество воздуха.
Водный фонд становится бедным на наличие кислорода. Из неё уходят все возможные живые организмы, такие как ракообразные и рыба. Вода заболачиваются, превращаясь со временем в болото, и пересыхает.
Ещё одной причиной загрязнения являются фермы. Есть три фактора:
При этом в воздух попадает аммиак. На расстоянии двух километров от ферм наблюдается его распространение и загрязнение воздуха. В результате близлежащие водоёмы оказываются загрязнены. Для предотвращения этого ниже по склону устраиваются пруды. А площадки откорма скота обязательно проектируются с учётом отметки грунтовых вод.
Последствием нарушения баланса азота в атмосфере является увеличение количества нитратов в продуктах питания. В культурах, которые выращивают в сельском хозяйстве, могут содержаться большие дозы нитратного азота. Его образование возможно при неправильной транспортировке, а также при помощи бактерий. При попадании в организм и взаимодействии с гемоглобином они нарушают проникновение кислорода в кровь. Это серьёзно отражается на здоровье человека.
Окислы также входят в состав азотного соединения. Соединения образуются и оказываются в атмосфере путём сжигания газа, выделяются при использовании автомобиля или турбинных самолётов. Они не причиняют вреда только в том случае, если не окисляются озоном до двуокиси азота. Нахождение большой концентрации в организме приводит к тяжёлым заболеваниям.
Для предотвращения чудовищных последствий этой проблемы необходимо тщательно изучать круговорот азота. Нужно найти способы соблюдения баланса между экосистемой и человеком. Можно заметить, что в современном мире при описании круговорота элементов возникают определённые затруднения, так как не все его процессы до конца изучены.
Влияние человека на круговорот
Деятельность людей имеет непосредственное отношение к этому. Промышленность является самым интенсивным вмешательством в этот процесс. Главным источником распространения лишнего объёма газа в атмосфере считается сельское хозяйство. Выращиваемые культуры поглощают множество питательных веществ, тем самым обедняя её. Картофель, свёкла, зерновые, каждый год потребляют до 200 кг вещества с одного гектара земли.
Если применение органических удобрений недостаточно или полностью отсутствуют бобовые растения, то при исчерпании резервных сил и вымывании полезных элементов из почвы ухудшается ее состояние и плодородие. И наоборот. Чрезмерное накопление удобрений приводит к увеличению количества вещества для наземных растений и уменьшению свободного азота, попадающего в атмосферу.
Круговорот азота в природе
Что такое круговорот азота в природе
Азот является неотъемлемой частью биосферы Земли, поскольку является веществом, так или иначе влияющем на жизнедеятельность всех живых организмов. В частности, воздух, которым дышат все живые существа, состоит на 78 процентов именно из азота. По замкнутым взаимосвязанным путям азот совершает полноценный круговорот во всей биосфере, в научной сфере этот круговорот называется биогеохимическим циклом. И чаще всего этот самый круговорот осуществляется именно за счёт почвенных процессов.
Обитающие там микроорганизмы играют ключевую роль в этом процессе, осуществляя при этом отдельный круговорот ‒ уже в почве. Азот может существовать в почве в форме газа и в форме нитритов, нитратов и аммония, иными словами, азот в почве представлен простым веществом и ионами. Уровень концентрации этих ионов напрямую связан с состоянием атмосферы, с происходящими с почвой процессами, с состоянием экосистем. Происходящие в почве процессы позволяют сократить опасные для живых существ концентрации веществ с содержанием азота, стабилизируют химический состав почвы, а это, в свою очередь, влияет на всю биосферу Земли.
Этапы круговорота азота в природе
Круговорот азота в природе осуществляется в результате нескольких этапов. Во-первых, происходит азотфиксация, когда атмосферный азот (N2) фиксируют микроорганизмы, бактерии или цианобактерии, живущие в почве, а также вступающие в симбиоз с растениями или отдельными животными; в результате азотфиксации образуются нитриты и аммиак (NH3).
Во-вторых, происходит аммонификация, когда органические азотсодержащие вещества переходят в минеральный азот, и такое осуществляется, в частности, в ходе гниения органических веществ, и почвенные бактерии напрямую влияют на этот процесс, в ходе которого сложные белки распадаются на ионы аммония и аммиак.
В-третьих, осуществляется нитрификация, когда соли аммиака постепенно переходят в соли азотной кислоты, в нитриты и нитраты, при этом часть связанных с этим почвенных бактерий производят окисление аммиачных солей в нитриты, а другая часть завершает дело, окисляя нитриты в нитраты.
В-четвёртых, осуществляется денитрификация, когда в результате деятельности бактерий и микроорганизмов азотосодержащие вещества подвергаются обратным процессам, то есть, нитраты переходят в нитриты, а после в газообразные оксиды, и возвращаются обратно в атмосферу. После этого цикл повторяется вновь.
В-пятых, происходит ассимиляция, когда неорганическая форма азота, например, нитраты, становится органической (переходит, например, в аминокислоты) и усваивается растениями, после гибели которых содержащийся азот вновь становится неорганическим в результате аммонификации.
Факторы, влияющие на круговорот азота в природе
В естественных условиях процессы в рамках круговорота находятся в равновесии, то есть, фиксация азота и нитрификация уравновешивают денитрификацию. Какая-то часть азота постоянно присутствует в почве, какое-то количество выходит на поверхность Земли из недр во время вулканических процессов, часть атмосферного азота оказывается в верхних слоях атмосферы и впоследствии улетучивается в космический вакуум.
Азотфиксация
Азотфиксация также может называться диазотрофией, и осуществляется деятельностью почвенных прокариотных бактерий. Азотфиксация может служить краеугольным камнем круговорота азота в природе. Из-за тройной ковалентной связи атомов молекулы азота это вещество не способно самостоятельно принимать участие в окислительных и восстановительных реакциях, и растения и животные не могут таким образом использовать азот. Катализаторами для этих реакций являются выделяемые микроорганизмами ферменты наподобие ферредоксина, гидрогеназы и нитрогеназы.
Азотфиксация требует большое количество энергии: например, на одну молекулу азота потребуется минимум 12 молекул аденозинтрифосфата, или на 1 миллиграмм азота нужно будет примерно 500 миллиграммов сахарозы. Азотфиксация осуществляется преимущественно в анаэробных условиях, поскольку важнейший для азотфиксации фермент, нитрогеназу, молекулярный кислород попросту блокирует. Некоторые аэробные бактерии имеют свои способы защиты фермента от кислородного блокирования.
Азотфиксацию осуществляют свободноживующие прокариотные бактерии, тесно связанные с растениями бактерии (места их скоплений ‒ прикорневая зона и листья), а ещё бактерии, живущие в симбиозе. Человек в каком-то смысле может способствовать азотфиксации в почве путём внесения небольших доз азотных удобрений (но лишь небольших, поскольку повышенные дозы окажут противоположный эффект). Также есть ряд особых бактериальных удобрений, направленных на повышение урожайности отдельных культур, для которых свойственен симбиоз с бактериями-азотфиксаторами.
Нитрификация
В ходе нитрификации аммиак переходит в азотистую и азотную кислоту. Это аэробный процесс, который происходит преимущественно в почве, но также и в воде. Нередко приводит к тому, что в почве и в воде появляется много токсичных нитратов. Процессы нитрификации состоят из двух этапов. В первом этапе аммиак сложным путём окисляется нитрозными бактериями, после чего становится нитрит-анионом, бактерии для этого используют ферменты-катализаторы аммиакмонооксигеназу, гидроксиламиноксидоредуктазу и цитохромоксидоредуктазу.
Во втором этапе нитрит-анион (в азотистой кислоте) окисляется уже нитратными бактериями и становится нитрат-анионом (в азотной кислоте), для этого используется нитрит-оксидоредуктаза. Осуществляющие эти сложные химические реакции бактерии относятся к протеобактериям, являющимся самыми распространёнными на Земле бактериями. Нитрификация может проводиться как автотрофным способом, так и гетеротрофным.
Аммонификация
Процесс аммонификации неизбежно связан с гниением, а точнее, с разложением органических веществ, и в первую очередь ‒ белка. Микроорганизмы осуществляют гидролиз белка с помощью фермента под названием протеаза, белок переходит в пептон, потом из него создаются полипептиды, а те идут на формирование аминокислот, которые подвергаются процессу, известному как дезаминирование, и среди продуктов этого процесса есть и аммиак.
Аэробные условия позволяют разложить белок максимально глубоко и окончательно, с полным расходованием энергетического запаса белка, а вот анаэробные условия не позволяют сильно глубоко расщепить белок. Возникающий при гниении неприятных запах связан с выделением сероводорода и меркаптана из тех белков, в которых содержалась сера, а также с выделением индола и скатола, а ещё фенола, возникающие при расщеплении аминокислот. Большая часть выделенного аммиака остаётся в итоге в почве, другая его часть поступает в тела бактерий и микроорганизмов, где и синтезируется.
Те бактерии, что осуществляют аммонификацию, тоже имеют очень широкое распространение во всех видах почв и водоёмов. При этом бактерии, отвечающие за аммонификацию, осуществляют расщепление белка и выделяют аммиак, который может быть окислен и превращён в азотную кислоту в ходе нитрификации. На аммонификацию способны отдельные виды как аэробных, так и анаэробных бактерий, в том числе те, что могут быть частью кишечной микрофлоры животных и человека и в их экскрементах.
После гибели организма животного или человека такие бактерии, бывшие частью микрофлоры, начинают осуществлять ускоренное разложение мёртвого организма с выделением зловония. Вместе с тем, свежие экскременты и навоз невозможно использовать в качестве питательных веществ, поскольку азотистые вещества в них не до конца минерализованы, и им ещё предстоит продолжить распадаться на аммиачные и азотнокислотные соли уже в слое почвы. Ещё аммонификация может осуществляться в перегное и гумусе, но содержащиеся там азотистые вещества распадаются крайне медленно, и в условиях умеренного климата за год может разложиться лишь один-три процента гумуса.
Лучше же разлагается мочевина, или диамид угольной кислоты, её в почве расщепляют уробактерии, выделяющие фермент под названием уреаза, и мочевина сначала становится углеаммиачной солью, которая распадается на аммиак и углекислоту.
Денитрификация
В отличие от нитрификации и аммонификации, денитрификация является восстановительным процессом, а не окислительным, и он связан с возвращением азота в атмосферу. На такое способны как бактерии-прокариоты (и археи-прокариоты), так и эукариотами, а именно: грибами (в том числе дрожжевыми) и клетками печени животных.
Денитрификация осуществляется в анаэробных условиях, поскольку подавляется молекулами кислорода, а ещё относится к анаэробному дыханию. Это процесс, в котором именно нитраты и продукты реакций восстановления нитратов, а не кислород, используются для окислительных реакций, и одни бактерии тем самым осуществляют окисление органических веществ, а другие окисляют минеральные вещества; при такого рода окислении выделяется энергия, и это часть метаболических процессов микроорганизмов.
В осуществлении денитрификации участвуют ферменты наподобие нитратредуктазы, редуктазы окиси и закиси азота. Полный процесс реакции с получением энергии под силу лишь прокариотам, способным как к обычному кислородному дыханию, так и к анаэробному, у эукариотов такое невозможно. Отдельные микроорганизмы проводят процесс не полностью, поскольку обладают лишь частью ферментов.
А есть такие микроорганизмы способны не только к денитрфикации, но и к азотфиксации. Эукариоты при денитрифкации не получают энергию, но они проводят этот процесс с целью очистить организм (как свой, так и окружающий “большой” организм, если речь идёт о клетках печени) от нитритов.
Ассимиляция
Указанная ранее денитрификация является диссимиляционным процессом восстановления нитрата, но она может осуществляться ассимиляционным путём. Иначе говоря, ассимиляция тоже является денитрификацией, но иного толка. Ассимиляция связана с жизнедеятельностью растений, части грибов и прокариотов, способных существовать в нитратных средах. Этот процесс всегда требует энергии.
Аммоний и нитраты из почвы, которые поглощают микробные и бактериальные клетки, на время выпадают из процесса круговорота азота, будучи включёнными в особые полимеры клеток, и за это время неорганические азотистые вещества становятся органическими, когда они включаются в состав молекул клеток растений. Под влиянием фермента нитратредуктазы нитрат становится нитритом, а под действием другого фермента, нитритредуктазы, нитрит становится аммиаком, который является составляющей аминокислот, и после этого азот может вернуться в атмосферу.
Азот в атмосфере
Без азота, по сути, не была бы возможна жизнь на Земле в принципе. Поэтому столь высоко содержание азота в атмосфере (78 процентов), при этом лишь сотая процента азота может содержаться в литосфере. Азот как часть аммиака (NH3) был одним из тех летучих веществ, что выбралась из недр во время активной вулканической деятельности на ещё только появившейся Земле миллиарды лет тому назад.
Потом, когда в атмосфере возник свободный кислород (в том числе за счёт появления первых организмов, способных к фотосинтезу), он начал вступать в реакцию с аммиаком, и продуктом этого становился свободный азот. В естественных условиях невозможна реакция между свободным азотом и свободным кислородом, поэтому и атмосфера с момента образования её основного состава не меняется; часть же аммиака растворилась в водах первого Мирового океана.
Азотные соединения генерируются во время гроз. При разряде молнии мощностью в 200 миллионов киловатт воздух мгновенно накаляется до двадцати тысяч градусов, это провоцирует распад молекул азота и кислорода, после чего эти молекулы вначале могут соединиться в окись азота, а после мгновенного охлаждения воздуха после разряда окисление продолжается и формируется двуокись азота.
Атмосферная влага и осадки провоцируют превращение двуокиси азота в слабую азотную кислоту, которая затем попадает в почву и тем самым минерализует её. Фиксация азота в атмосфере может произойти и по фотохимическому сценарию: молекула азота (N2) может поглотить квант света, после чего становится активированной и ей становится намного легче соединиться с кислородом.
Азот в почве
Фиксация атмосферного азота в ходе деятельности свободноживущих и симбиотических организмов позволяет насыщать азотом почву (это в естественных условиях, но есть ещё и минеральные и органические азотные удобрения как продукт антропогенной деятельности).
Практически весь почвенный азот представлен в гумусе, и больше всего гумуса в чернозёмных почвах (толщина гумусового горизонта может составлять полтора-два метра, уровень запасов составляет от 600 до 900 тонн на гектар). Куда меньший уровень гумуса (от 120 до 140 тонн на гектар) имеют дерново-подзолистые почвы, у которых азот скапливается в верхнем горизонте (до 25 сантиметров).
В естественных условиях около четырёх-пяти процентов всего азота содержится в гумусе, но в ходе продолжительного использования почв без органических удобрений количество азота в гумусе подрастает до шести-семи процентов. Лишь два процента азота в пахотном почвенном слое являются минеральными соединениями, остальной объём ‒ органический.
Уровень нитратов серьёзно вариьируется из-за процессов, связанных с круговоротом азота (ранее упомянутые аммонификация, нитрификация, денитрификация), а ещё с уровнем азотной ассимиляции, с тем, как применяют удобрение, и ещё на это влияет водный режим.
От 75 до 95 процентов азота в составе слабощелочных и нейтральных почв присутствует в форме нитратов. Уровень хозяйственного использования почвы влияет на уровень нитратов в пахотном слое (от 30 до 150 килограммов на гектар). Минеральный азот накапливается перед посевом, в начале развития культурных растений и после уборки урожая, однако эти вещества подвергаются ассимиляции растущими растениями, и это снижает уровень минерального азота до уровня в пять-восемь килограммов на гектар.
Азот в живых организмах
Азот не только влияет на жизнь на Земле, но и влияет на жизнедеятельность всех живых организмов в отдельности. от 16 до 18 процентов массы белков занимает азот, он есть в нуклеиновых кислотах (ДНК и РНК), в нуклеопротеидах, в аминокислотах, хлорофилле, гемоглобине.
Азот помогает в формировании пептидных связей, в формировании всех видов белков, является критически необходимым при создании аминокислот, “строительного материала” белков и нуклеиновых кислот. Аминокислоты также лежат в основе биосинтеза таких веществ, как пигменты, витамины, медиаторы, гормоны, пиримидиновые и пуриновые основания. Около 44-х процентов массы тела составляют белки, формируемые в том числе азотом.
Оксид азота (NO) может использоваться в медицине в качестве иммунотропного медиатора; в человеческом организме оксид азота формируется и накапливается в эндотелии. Оксида азота контролирует тонус гладкой мускулатуры сосудистой системы, контролирует нормальное артериальное давление, для желудочно-кишечного тракта и мочеполовой системы является нейромедиатором, а также помогает уничтожать внутриклеточных паразитов.
В то же время, если организм столкнулся с сепсисом, происходит выброс оксида азота, а это ускоряет наступление септического шока. Также оксида азота участвует в развитии заболеваний, то есть, служит нейромедиатором при бронхиальной астме, хроническом гломерулонефрите, рассеянном склерозе, туберкулёзе, СПИДе, болезни Крона и онкологических заболеваниях.
Значение круговорота азота в природе
Таким образом, круговорот азота является ни много ни мало важнейшим для жизнедеятельности всех живых организмов на Земле, для функционирования всей биосферы циклом. Азот постоянно присутствует в атмосфере, даже если какая-то его часть фиксируется микроорганизмами почвы, он потом неизбежно возвращается в атмосферу. Азот способствует минерализации почв, делает их плодородными, пригодными для роста растений, для выращивания сельскохозяйственных культур.
Тем более, что азот попадает в почву даже посредством грозового дождя. Азот играет ключевую роль в синтезе аминокислот и белков во всех органических веществах, во всех живых организмах. Азот же занимает важную роль в процессе разложения умерших организмов, ведь при распаде органики азот расщепляется на аммиак, нитриты и нитраты, и какая-то часть этих веществ может быть поглощена растениями.
И сам факт того, что в процессе расщепления азота в почве принимают участие многие микроорганизмы, доказывает то, что почва сама по себе является весьма сложной экосистемой. И даже усиливающееся с каждым годом антропогенное влияние не способно полностью разрушить сложившийся status quo.
Влияние человека на круговорот азота в природе
В последние столетия влияние человеческой деятельности на естественную циркуляцию азота в природе стало весьма ощутимым. Промышленная деятельность, загрязняющая воздух кислотными веществами, в числе которых есть и оксиды азота, приводит к кислотным дождям ‒ осадкам и снегу с пониженным pH (водородным показателем). Оксид азота создаётся в результате высоких температур, при которых осуществляется химическая реакция с соединением азота и кислорода (который составляет лишь 20 процентов воздуха).
На промышленных предприятиях, в том числе на тех, где сжигается органическое топливо, такие высокие температуры, подходящие для создания оксида азота, возникают в двигателях внутреннего сгорания и котлах. В естественных условиях оксид азота образуется во время грозы, при разрядах молний. Из-за антропогенной деятельности количество выделяемого оксида азота (II) увеличилось сверх естественной нормы, а оксид азот (II) может достаточно легко перейти в оксид азота (IV), после чего так же легко вступает в контакт с атмосферной влагой, и результатом становится формирование азотной и азотистой кислот, и эти кислоты во время осадков оказываются в почве, делая её менее благоприятной для жизнедеятельности, к примеру, растений.
Негативным последствием человеческой деятельности являются выбросы в атмосферу оксидов азота вследствие активного промышленного производства аммиака, азотной и серной кислот. Именно оксиды азота являются одним из наиболее распространённых загрязняющих веществ. Также активно изготавливают нитриты, нитратную селитру, органические удобрения, предназначенные для полевых, огородных и садовых работ, и чрезмерное насыщение почв этими веществами пагубно влияет на минеральный состав почвы, делая её менее плодородной.
Ещё одним примером отрицательного воздействия на азотистый почвенный обмен являются сточные воды, неконтролируемый выгул собак, свалки бытовых отходов, изношенная канализация ‒ иными словами, биологическое загрязнение почвы.
Результатом такого становится то, что в почве оказывается слишком много аммиака и солей аммония, меркаптанов и индола, других продуктов гниения органических веществ. Излишки аммиака под действием бактерий переходят в излишки нитратов, которые накапливаются в почве, отражаясь на её плодородности.