Как записать arccos в mathcad
Как записать sin в квадрате в mathcad
Система MathCAD содержит большой набор встроенных элементарных функций. Функции задаются своими именами и значениями аргумента, заключёнными в круглых скобках. Функции, как и переменные, и числа, могут входить в состав математических выражений. В ответ на обращение к ним, функции возвращают вычисленные значения. Ниже представлены некоторые из этих функций.
1.2.1 Тригонометрические функции
1.2.2 Гиперболические функции
sinh (z) — гиперболический синус
cosh(z) — гиперболический косинус
tanh(z) — гиперболический тангенс
sech(z) — гиперболический секанс
csch(z) — гиперболический косеканс
coth(z) — гиперболический котангенс
1.2.3 Обратные тригонометрические функции
asin (z) — арксинус
acos(z) — арккосинус
atan(z) — арктангенс
1.2.3 Обратные тригонометрические функции
asin (z) — арксинус
acos(z) — арккосинус
atan(z) — арктангенс
1.2.4 Обратные гиперболические функции
asinh (z) — обратный гиперболический синус
acosh(z) — обратный гиперболический косинус
atanh(z) — обратный гиперболический тангенс
1.2.5 Показательные и логарифмические функции
exp (z) — экспоненциальная функция
ln (z) — натуральный логарифм
log (z) — десятичный логарифм
1.2.6 Функции с условиями сравнения
ceil (x) — наименьшее целое, большее или равное х
floor(x) — наибольшее целое, меньшее или равное х
mod(x,y) — остаток отделения х/у со знаком х
angle(x,y) — положительный угол с осью х для точки с координатами (х,у)
Синус в квадрате X
Как собственно записать F(x)=sin^2\,x-cos\,2x Точнее сам синус в квадрате икс. Range(«B» &.
Построить график функции тангенс в квадрате
Нужно построить график функции тангенс в квадрате tan2(x). Помогите, у меня не получается. Вот мой.
Нарисовать квадрат в квадрате, в квадрате и так далее
Прошу помощи, мне подкинули задачку. Необходимо вывести на экран вот это: * * * * * * * * * *.
Найти сумму чисел 1 в квадрате до 10 в квадрате
Создать программу по всем 3 видам циклов. цикл с параметром,цикл с условием,цикл,и цикл с.
Найти сумму от N в квадрате, до 2N в квадрате
Дано N(>0) Найти сумму sqr(N)+sqr(N+1)+sqr(N+2)+. +sqr(2*N)
График, как задать синус в квадрате
Не могу построить график, пробовал вариант, заменяя выражение (выделеные) на sin(x) = sin(pi/6)(3-4t^2), все равно нечего не хочет работать. Может кто поможет или даст ссылку, где написано, как решить мою проблему, заранее спасибо.
Синус в квадрате X
Как собственно записать F(x)=sin^2\,x-cos\,2x Точнее сам синус в квадрате икс. Range(«B» &.
Построить график функции тангенс в квадрате
Нужно построить график функции тангенс в квадрате tan2(x). Помогите, у меня не получается. Вот мой.
Не работает ln^2(ln в квадрате)
Нарисовать квадрат в квадрате, в квадрате и так далее
Прошу помощи, мне подкинули задачку. Необходимо вывести на экран вот это: * * * * * * * * * *.
Найти сумму чисел 1 в квадрате до 10 в квадрате
Создать программу по всем 3 видам циклов. цикл с параметром,цикл с условием,цикл,и цикл с.
Найти сумму от N в квадрате, до 2N в квадрате
Дано N(>0) Найти сумму sqr(N)+sqr(N+1)+sqr(N+2)+. +sqr(2*N)
Х в квадрате
каким образом мжно делать что бы Х выводился на экарн со степенем?
Помощь в написании контрольных, курсовых и дипломных работ здесь.
Синус в квадрате X
Как собственно записать F(x)=sin^2\,x-cos\,2x Точнее сам синус в квадрате икс. Range(«B» &.
Прямоугольник в квадрате
Здравствуйте,попал в очень неприятную ситуацию, понадеялся на человека, а он «не смог». Времени.
Жизнь в квадрате
В некоторых клетках квадрата N x N живут микроорганизмы (не более одного в одной клетке). Каждую.
Задача о квадрате
Есть у нас квадрат у него бросают 3 точки какая вероятность того что эти три точку образуют 1).
MathCAD. MatLab
И другие программы этой серии
MathCAD 2001
— Арктангенса нет на панелях инструментов, поэтому его нужно найти в специальном списке функций. Вызвать этот список можно либо сочетанием [Ctrl]+[E], либо выполнив команду Insert / Function (Вставка/Функция), либо при помощи специальной кнопки панели Standard (Стандартная). В открывшемся окне есть список категорий функций (Function Category), список самих функций выбранной категории (Function Name), а также окно информации о выбранной функции. По умолчанию определена категория All (Все) и в окне Function Name находится полный список всех встроенных функций MathCAD.
Очевидно, что арктангенс нужно искать в категории Trigonometric (Тригонометрические). Среди множества всевозможных тригонометрических функций находится 2 вида арктангенса (Atan и Atan2).
Для того чтобы определить, какой из них следует выбрать, прочитаем описание для каждого:
Atan(Z). \»Returns the angle (in radians) whose tangent is z. Principal value for complex z.\» \»Возвращает угол (в радианах), для которого тангенс — это Z. Главное значение для комплексного Z\».
Atan2(x,y). \»Returns the angle (in radians) from the x-axis to a line containing the origin (0, 0) and the point (x, y). Both x and y must be real.\» \» Возвращает угол (в радианах) между осью x и линией, содержащей точку начала координат и точку (x,y). X и Y должны быть действительными\».
Очевидно, нужно использовать первую функцию. Выбираем ее и нажимаем Ok.
2) Выражение введено, но параметры его вида, установленные по умолчанию, зачастую могут не удовлетворить пользователя. Для того чтобы отредактировать вид выражения, нужно при помощи команды Format/Equation (Формат/Уравнение) вызвать соответствующее меню.
Здесь вы можете определить цвет шрифта формул (Default equation color), выбрать стиль (Style name). При помощи кнопки Modify (Модифицировать) вы можете изменить стиль текста формул: выбрать тип, размер, начертание шрифта. Чтобы поменять параметры самой математической области, выполните правый щелчок мышью по любой точке редактируемой формулы и в открывшемся контекстном меню выберите пункт Properties (Свойства).
Как написать арксинус в маткаде
Этот раздел описывает тригонометрические, гиперболические и показательные функции Mathcad вместе с обратными им. Здесь также описываются встроенные функции Бесселя.
Тригонометрические функции и обратные им.
Тригонометрические функции Mathcad и обратные им определены для любого комплексного аргумента. Они также возвращают комплексные значения везде, где необходимо. Результаты для комплексных значений вычисляются с использованием тождеств:
Для применения этих функций к каждому элементу вектора или матрицы используйте оператор векторизации.
Обратите внимание, что все эти тригонометрические функции используют аргумент, выраженный в радианах. Чтобы перейти к градусам, используется встроенная единица deg. Например, чтобы вычислить синус 45 градусов, введите sin(45*deg).
Имейте в виду, что из-за ошибок округления, свойственных машинной арифметике, Mathcad может возвращать очень большое число в той точке, где находится особенность вычисляемой функции. Вообще, необходимо быть осторожным при вычислениях в окрестности таких точек.
asin(z) | Возвращает угол (в радианах), чей синус — z. |
acos(z) | Возвращает угол (в радианах), чей косинус — z. |
atan(z) | Возвращает угол (в радианах), чей тангенс — z. |
Гиперболические функции sinh и cosh определяются формулами:
Эти функции также могут использовать комплексный аргумент и возвращать комплексные значения. Гиперболические функции тесно связаны с тригонометрическими функциями. Справедливы формулы:
sinh(iz)=isin(z)cosh(iz)=cos(z)
sinh (z) | Возвращает гиперболический синус z. |
cosh (z) | Возвращает гиперболический косинус z. |
tanh (z) | Возвращает sinh(z)/cosh(z), гиперболический тангенс z. |
csch (z) | Возвращает 1/sinh(z), гиперболический косеканс z. |
sech (z) | Возвращает 1/cosh(z), гиперболический секанс z. |
coth (z) | Возвращает 1/tanh(z), гиперболический котангенс z. |
asinh (z) | Возвращает число, чей гиперболический синус — z. |
acosh (z) | Возвращает число, чей гиперболический косинус — z. |
atanh (z) | Возвращает число, чей гиперболический тангенс — z. |
Логарифмические и показательные функции
Логарифмические и показательные функции Mathcad могут использовать комплексный аргумент и возвращать комплексные значения. Значения экспоненциальной функции для комплексного аргумента вычисляются с применением формулы
e x+iy =e x (cos(y) + isin(y))
Вообще говоря, значения натурального логарифма даются формулой
ln(x + iy)=ln|x + iy|+ atan(y/x)i + 2n p i
В Mathcad функция ln возвращает значение, соответствующее n = 0. А именно:
ln(x + iy)=ln|x + iy|+ atan(y/x)i
Оно называется основным значением логарифма. Рисунок 1 иллюстрирует некоторые основные свойства логарифма.
exp(z) | Возвращает e в степени z. |
ln(z) | Возвращает натуральный логарифм z. (z0). |
log(z) | Возвращает логарифм z по основанию 10. (z0). |
На Рисунке 1 показано, как можно использовать эти функции для вычисления логарифма по любому основанию.
Рисунок 1: Использование логарифмических функций.
Эти функции обычно возникают как решения для волнового уравнения, подчиненного цилиндрическим граничным условиям.
Функции Бесселя первого и второго рода, Jn(x) и Yn(x), являются решениями для дифференциального уравнения
Модифицированные функции Бесселя первого и второго рода, In(x) и Kn(x), являются решениями для немного видоизмененного уравнения:
J0(x) | Возвращает J0(x); x вещественный. |
J1(x) | Возвращает J1(x); x вещественный. |
Jn(m, x) | Возвращает Jn(x); x вещественный, 0m100. |
Y0(x) | Возвращает Y0(x); x вещественный, x > 0. |
Y1(x) | Возвращает Y1(x); x вещественный, x > 0. |
Yn(m, x) | Возвращает Yn(x). x > 0, 0m100 |
I0(x) | Возвращает I0(x); x вещественный. |
I1(x) | Возвращает I1(x); x вещественный. |
In(m, x) | Возвращает In(x); x вещественный, 0m100. |
K0(x) | Возвращает K0(x); x вещественный, x > 0. |
K1(x) | Возвращает K1(x); x вещественный, x > 0. |
Kn(m, x) | Возвращает Kn(x). x > 0, 0m100 |
Следующие функции возникают в широком круге задач.
x должен быть вещественным.
Гамма-функция Эйлера удовлетворяет рекуррентному соотношению
Откуда следует для положительных целых z:
Интеграл ошибок часто возникает в статистике. Он может также быть использован для определения дополнения интеграла ошибок по формуле:
Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Как написать arcsin в mathcad
Помогите плз с Маткадом
Программирование алгоритмов линейной структуры
4 ответа к вопросу “Помогите плз с Маткадом”
чем помочь? пиши в агент или аську 452371863
во-первых, арксинус кажется пишется как asin во-вторых, для чего вы умножаете название функции да дробь? (и логарифм и ваш арксинус. )
Система Mathcad
В диалоговом окне Animate задайте номер первого кадра в поле From(От), номер последнего кадра в поле To (До) и скорость анимации в поле At (Скорость) в кадрах в секунду.
Выделите протаскиванием указателя мыши область в документе, которая станет роликом анимации.
Запустите просмотр анимации в проигрывателе нажатием кнопки воспроизведения в левом нижнем углу окна проигрывателя.
В случае если вид анимации вас устраивает, сохраните ее в виде видеофайла, нажав кнопку Save As в диалоговом окне Animate.
Закройте диалог Animate.
Сохраненный видеофайл можно использовать за пределами MathCAD. Если в Проводнике Windows дважды щелкнуть на имени этого файла, он будет загружен в проигрыватель видеофайлов Windows, и вы увидите его на экране компьютера. Таким образом, запуская видеофайлы обычным образом, можно устроить красочную презентацию результатов работы как на своем, так и на другом компьютере.
Ввод/вывод во внешние файлы.
Для общения с внешними файлами в MathCAD встроены следующие функции:
READPRN (“file”) – чтение данных в матрицу из текстового файла;
WRITEPRN(“file”) – запись данных в текстовый файл;
APPENDPRN(“file”) – дозапись данных в существующий текстовый файл,
где file – путь к файлу.
Каким образом представляется функция при построении графика? График в декартовой системе координат: создание, задание аргумента по умолчанию, в виде ранжированной переменной, изображение нескольких функций на одном графике, работа с командами «масштаб» и «трассировка».
Построение графика в полярной системе координат и графика параметрически заданной функции.
Форматирование 2-х мерных графиков. Размещение надписей на поле графика.
Перечислите графики функций двух переменных, которые может строить MathCAD. Объясните, как строятся график поверхности? Каким образом на трехмерном графике можно изменить масштаб изображения, угол поворота? И как можно задать «живую» картинку?
Расскажите о контурных и векторных графиках в MathCAD. Объясните их.
Как строятся в MathCAD графики параметрически заданной поверхности и параметрически заданной кривой?
Расскажите о форматировании 3-хмерных графиков.
Что такое анимация и как она создается в системе MathCAD?
Как осуществляется ввод/вывод во внешние файлы в системе MathCAD?
Задачи линейной алгебры
В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math.
При попытке вычислить модуль вектора с панели Matrix будет ошибочное состояние. Точно также будет ошибочное состояние при попытке вычислить детерминант матрицы с панели Calculator.
Рассмотрим неизвестные вам до сих пор операторы панели Matrix.
— сумма элементов вектора.
— оператор векторизации. Он позволяет провести однотипную операцию над всеми элементами массива (т.е. матрицы или вектора), упрощая тем самым программирование циклов. Например, иногда требуется умножить каждый элемент одного вектора на соответствующий элемент другого вектора. Непосредственно такой операции в MathCAD нет, но ее легко осуществить с помощью векторизации. Оператор векторизации можно использовать только с векторами и матрицами одинакового размера.
Для решения задач линейной алгебры в MathCAD встроены матричные функции. Их можно разделить на три основные группы:
функции определения (генерации) матриц и операции с блоками матриц;
функции вычисления различных числовых характеристик матриц;
функции, реализующие численные алгоритмы решения задач линейной алгебры.
Из каждой группы приведем по несколько, наиболее часто используемых функций.
matrix(m, n, f) – создает и заполняет матрицу размерности m x n, элемент которой, расположенный в i-ой строке и j-ом столбце равен значению f(i, j) функции f(x, y);
diag(v) – создает диагональную матрицу, элементы главной диагонали которой хранятся в векторе v;
identity(n) – создает единичную матрицу порядка n;
augment(A, B) –объединяет матрицы A и B; матрица B располагается справа от матрицы A, при этом матрицы должны иметь одинаковое число строк;
stack(A, B) – объединяет матрицы A и B, матрица В располагается внизу под матрицей А, при этом матрицы должны иметь одинаковое число столбцов;
submatrix(A, ir, jr, ic, jc) – формирует матрицу, которая является блоком матрицы А, расположенным в строках с ir по jr и в столбцах с ic по jc, причем ir jr, ic jc.
last(v) – вычисляет номер последнего элемента вектора V;
length(v) – вычисляет количество элементов вектора V;
min(v), max(v) – вычисляет минимальное и максимальное значения вектора V;
Re(v) – создает вектор из реальных частей комплексных элементов вектора V;
Im(v) — создает вектор из мнимых частей комплексных элементов вектора V;
sort(V) – сортировка элементов вектора V по возрастанию;
reverse (sort(v)) – сортировка элементов вектора V по убыванию;
csort (A,n) – сортировка элементов n – го столбца матрицы А по возрастанию (перестановкой строк);
rsort (A,n) – сортировка элементов n – ой строки матрица А по возрастанию (перестановкой столбцов);
rows(A) – вычисляет число строк в матрице А;
cols(A) – вычисляет число столбцов в матрице А;
max(A), min(A) – определяет максимальное и минимальное значения матрицы А;
tr(A) – вычисляет след квадратной матрицы А (след матрицы равен сумме ее диагональных элементов по главной диагонали);
mean(A) – среднее значение элементов матрица А.
Действие функций второй группы ясно из их названия, поэтому примеры для них приводить не будем.
rref(A) – приведение матрицы к ступенчатому виду с единичным базисным минором (выполняются элементарные операции со строками матрицы: перестановка строк, умножение строки на число, сложение строк);
rank(A) – вычисляет ранг матрицы А (количество линейно-независимых строк или это число ненулевых строк ступенчатой матрицы rref(A));
eigenvals(A) – вычисление собственных значений квадратной матрицы А;
eigenvecs (A) – вычисление собственных векторов квадратной матрицы А, значением функции является матрица, столбцы которой есть собственные векторы матрицы А, причем порядок следования векторов отвечает порядку следования собственных значений, вычисленных с помощью функции eigenvals(A);
eigenvec(A,e) – вычисление собственного вектора матрицы А, отвечающего собственному значению e;
normi(A) – max – норма, или — норма (infinity norm). в линейной алгебре используются различные матричные нормы, которые ставят в соответствие матрице некоторую скалярную числовую характеристику;
Функции третьей группы реализуют, как правило, довольно сложные вычислительные алгоритмы. Приведем примеры на использование функций rref и функций для вычисления собственных значений и собственных векторов матрицы. Задача поиска собственных значений и собственных векторов матрицы очень часто встречается в вычислительной практике.
В самом простом виде задача на собственные значения матрицы формулируется следующим образом: требуется найти такие значения , чтобы матричное уравнение имело решение. В таком случае число называют собственным числом матрицы А, а n- компонентный вектор Х, приводящий уравнение с заданным в тождество – собственным вектором. В вышеприведенном примере собственные вектора матрицы А получены в матрице MS. Проверка проведена для первого столбца матрицы MS и соответствующего ему собственного числа 0 =5.439.
Теперь вы знаете какие однокоренные слова подходят к слову Как написать арксинус в маткаде, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать арксинус в маткаде", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.