Главная » Правописание слов » Как написать голосового помощника на питоне

Слово Как написать голосового помощника на питоне - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Простейший голосовой помощник на Python

Для создания голосового помощника не нужно обладать большими знаниями в программировании, главное понимать каким функционалом он должен владеть. Многие компании создают их на первой линии связи с клиентом для удобства, оптимизации рабочих процессов и наилучшей классификации звонков. В данной статье представлена программа, которая может стать основой для Вашего собственного чат-бота, а если точнее – голосового помощника для распознавания голоса и последующего выполнения команд. С ее помощью мы сможем понять принцип работы наиболее часто встречаемых голосовых помощников.

Для начала объявим необходимые нам библиотеки:

Также не забудем вести лог файл, который понадобится нам, если же мы все-таки решим улучшить бота для работы с нейронной сетью. Многие компании использую нейронную сеть в своих голосовых помощниках для понимания эмоций клиента и соответствующего реагирования на них.

Также стоит не забывать, что с помощью анализа логов, мы сможем понять слабые места алгоритма бота и улучшить взаимодействие с клиентами.

В лог файл мы записываем время сообщения, автора (бот или пользователь) и собственно сам сказанный текст.

Выводим первое сообщение за авторством бота: Привет! Чем я могу вам помочь?

А с помощью такой процедуры в Jupyter Notebook мы можем озвучить через устройство воспроизведения, настроенное по умолчанию, сказанные слова:

Как озвучивать текст мы рассмотрели выше, но как же мы свой голос сможем превратить в текст? Тут нам поможет распознавание речи от Google и некоторые манипуляции с микрофоном.

Что может сделать наш помощник кроме того, чтобы нас слушать? Все ограничено нашей фантазией! Рассмотрим несколько интересный примеров.

Начнем с простого, пусть при команде открыть сайт – он откроет сайт (не ожидали?).

Иногда полезно послушать свои слова, да чужими устами. Пусть бот еще умеет и повторять за нами:

Пусть еще и собеседником будет, но начнем мы пока только со знакомства:

Мы также можем попросить голосового помощника назвать случайное число в выбранных нами пределах в формате: Назови случайное число от (1ое число) до (2ое число).

Для того, чтобы завершить программу, достаточно только попрощаться с ботом:

А чтобы все это работало беспрерывно, мы создаем бесконечный цикл.

Проведем тестовый диалог:

В созданной папке-сессии хранятся все файлы-аудиозаписи нашего голоса и текстовый лог-файл:

В текстовый лог-файл записывается:

В данной статье мы рассмотрели простейшего голосового бота и основной полезный функционал для дальнейшей работы бота с нейронной сетью. Для анализа качества оказанной помощи и дальнейшей работы по улучшению мы сможем проверять лог файл.

Этот бот может стать основой для вашего собственного Джарвиса!

Источник

Голосовой помощник на Python

Вы когда-нибудь задумывались, как здорово было бы иметь своего собственного ИИ-ассистента (типа Д.Ж.А.Р.В.И.С.)? Было бы гораздо легче отправлять письма, искать информацию в Википедии, не открывая браузер, и выполнять ещё много других действий с помощью одного только голоса.

В этом уроке мы узнаем, как написать код собственного голосового помощника на Python.

Перед тем, как начать, мы должны определиться, какими функциями должен обладать наш голосовой помощник:

И всё это без ручного ввода запросов в браузере!

А теперь приступим, собственно, к написанию нашего помощника.

И да: не забудьте сперва придумать ему имя :з

Настройка среды

Я использую PyCharm, но вы можете выбрать абсолютно любой удобный вам редактор.

Сперва мы импортируем/установим все необходимые библиотеки:

Определение функции воспроизведения речи

Интеллектуальному голосовому помощнику прежде всего полагается говорить. Чтобы бот говорил, мы определим функцию speak() , которая принимает на входе аудио и произносит его.

Теперь нам нужно аудио, чтобы обеспечить коммуникацию пользователя и ассистента. Для этого мы установим модуль pyttsx3 .

Это библиотека Python, которая поможет нам конвертировать текст в устную речь. Она работает оффлайн и доступна как для Python 3, так и для Python 2.

После успешной установки pyttsx3 нужно импортировать модуль в нашу программу.

Что такое sapi5? Microsoft Speech API (SAPI5) – технология для распознавания и синтеза речи, предоставленная Microsoft.

VoiceId помогает нам выбирать разные голоса:

Марк Лутц «Изучаем Python»

Скачивайте книгу у нас в телеграм

Создание функции speak()

Создание функции main()

Теперь определим функцию main() и вызовем функцию speak() внутри неё.

P.S. Я назову своего ассистента Friday (Пятница).

Создание функции wishme()

Чтобы предоставить нашему ассистенту информацию о времени, мы должны импортировать модуль datetime, делается это следующей командой:

Теперь напишем функцию wishme() :

Определение функции takeCommand():

С помощью takeCommand() наш интеллектуальный ассистент сможет возвращать строку, принимая голосовые команды по микрофону.

Но перед определением takeCommand() мы должны установить модуль speechRecognition следующей командой:

После установки импортируем модуль в программу:

Начнём написание функции takeCommand() :

А теперь мы наконец-то можем приступить к определению задач для получения необходимой информации.

Задача 1: поиск по Википедии

Команда для установки:

Задача 2: открыть YouTube в браузере

Это встроенный модуль, так что устанавливать его нам не придётся. Остаётся лишь импортировать его.

Задача 3: открыть Google-поиск в браузере

Открытие Google происходит по той же логике, что и с YouTube.

Задача 4: воспроизвести музыку

Чтобы проигрывать музыку, нужно импортировать модуль os :

В данном коде мы в первую очередь открываем директорию с музыкой пользователя и перечисляем все песни в директории с помощью модуля os .

Задача 5: узнать время

После сохранения времени в strTime мы передаем переменную в качестве аргумента в функцию speak() , чтобы там она превратилась в речь.

Задача 6: открыть StackOverflow

Делаем то же самое, что и в случае с Google/Youtube.

Задача 7: открыть freecodecamp

Делаем то же самое, что и в случае с Google/Youtube.

Задача 8: открыть PyCharm (или другую IDE):

Чтобы открыть PyCharm или любое другое приложение, нужно указать путь к нему.

Задача 9: отправить email

Чтобы послать электронное письмо, мы импортируем модуль smtplib.

Simple Mail Transfer Protocol (SMTP) — протокол, позволяющий нам отправлять электронные письма и маршрутизировать электронные письма между разными почтовыми серверами.

Метод sendmail представлен в модуле SMTP. Именно этот метод позволяет отправлять письма.

Он принимает 3 параметра:

Замечание: не забудьте включить опцию ‘ненадёжные приложения, у которых есть доступ к аккаунту’ в вашем Gmail-аккаунте. Иначе функция sendEmail не сработает нужным образом.

Вызываем sendEmail() внутри main() :

Повторяем изученное

И тут последует самый противоречивый вопрос…

Можно ли считать это искусственным интеллектом?

Технически нет, ведь этот помощник – всего лишь результат выполнения набора команд. Но если поподробнее разобраться в вопросе, можно узнать, что цель любого ИИ – просто облегчить человеческую работу, выполняя задания с эффективностью человека (или даже лучше).

А наш голосовой помощник в значительной степени решает эту задачу.

Так что финальный вердикт: это ИИ!

Конец!

Мои поздравления: мы успешно создали нашего личного голосового помощника и сделали ещё один шаг навстречу нашей лени!

Надеюсь, статья вам понравилась!

Чтобы лучше понять код, можно зайти в репозиторий автора на GitHub.

Источник

Создание голосового ассистента на Python, часть 1

Добрый день. Наверное, все смотрели фильмы про железного человека и хотели себе голосового помощника, похожего на Джарвиса. В этом посте я расскажу, как сделать такого ассистента с нуля. Моя программа будет написана на python 3 в операционной системе windows. Итак, поехали!

Работать наш ассистент будет по такому принципу:

Нам нужно поставить библиотеку pyttsx3 для синтеза речи:

Затем можно запустить тестовую программу и проверить правильность её выполнения.

2) Распознавание речи

Существует много инструментов для распознавания речи, но они все платные. Поэтому я пытался найти бесплатное решение для моего проекта и нашёл её! Это библиотека speech_recognition.

Также для работы с микрофоном нам необходима библиотека PyAudio.

У некоторых людей возникает проблема с установкой PyAudio, поэтому следует перейти по этой ссылке и скачать нужную вам версию PyAudio. Затем ввести в консоль:

Затем запускаете тестовую программу. Но перед этим вы должны исправить в ней device_index=1 на своё значение индекса микрофона. Узнать индекс микрофона можно с помощью этой программы:

Тест распознавания речи:

Если всё отлично, переходим дальше.

Если вы хотите, чтобы ассистент просто общался с вами (без ИИ), то это можно сделать с помощью бесплатного инструмента DialogFlow от Google. После того, как вы залогинетесь, вы увидите экран, где уже можно создать своего первого бота. Нажмите Create agent. Придумайте боту имя (Agent name), выберете язык (Default Language) и нажмите Create. Бот создан!

Чтобы добавить новые варианты ответов на разные вопросы, нужно создать новый intent. Для этого в разделе intents нажмите Create intent. Заполните поля «Название» и Training phrases, а затем ответы. Нажмите Save. Вот и всё.

Чтобы управлять ботом на python, нужно написать такой код. В моей программе бот озвучивает все ответы.

На сегодня всё. В следующей части я расскажу как сделать умного бота, т.е. чтобы он мог не только отвечать, но и что-либо делать.

Источник

Пишем голосового ассистента на Python

Введение

Технологии в области машинного обучения за последний год развиваются с потрясающей скоростью. Всё больше компаний делятся своими наработками, тем самым открывая новые возможности для создания умных цифровых помощников.

В рамках данной статьи я хочу поделиться своим опытом реализации голосового ассистента и предложить вам несколько идей для того, чтобы сделать его ещё умнее и полезнее.

Что умеет мой голосовой ассистент?

Описание умения Работа в offline-режиме Требуемые зависимости
Распознавать и синтезировать речь Поддерживается pip install PyAudio (использование микрофона)

pip install pyttsx3 (синтез речи)

Для распознавания речи можно выбрать одну или взять обе:

Шаг 1. Обработка голосового ввода

Начнём с того, что научимся обрабатывать голосовой ввод. Нам потребуется микрофон и пара установленных библиотек: PyAudio и SpeechRecognition.

Подготовим основные инструменты для распознавания речи:

Теперь создадим функцию для записи и распознавания речи. Для онлайн-распознавания нам потребуется Google, поскольку он имеет высокое качество распознавания на большом количестве языков.

А что делать, если нет доступа в Интернет? Можно воспользоваться решениями для offline-распознавания. Мне лично безумно понравился проект Vosk.

На самом деле, необязательно внедрять offline-вариант, если он вам не нужен. Мне просто хотелось показать оба способа в рамках статьи, а вы уже выбирайте, исходя из своих требований к системе (например, по количеству доступных языков распознавания бесспорно лидирует Google).

Теперь, внедрив offline-решение и добавив в проект нужные языковые модели, при отсутствии доступа к сети у нас автоматически будет выполняться переключение на offline-распознавание.

Замечу, что для того, чтобы не нужно было два раза повторять одну и ту же фразу, я решила записывать аудио с микрофона во временный wav-файл, который будет удаляться после каждого распознавания.

Таким образом, полученный код выглядит следующим образом:

Возможно, вы спросите «А зачем поддерживать offline-возможности?»

Я считаю, что всегда стоит учитывать, что пользователь может быть отрезан от сети. В таком случае, голосовой ассистент всё еще может быть полезным, если использовать его как разговорного бота или для решения ряда простых задач, например, посчитать что-то, порекомендовать фильм, помочь сделать выбор кухни, сыграть в игру и т.д.

Шаг 2. Конфигурация голосового ассистента

Поскольку наш голосовой ассистент может иметь пол, язык речи, ну и по классике, имя, то давайте выделим под эти данные отдельный класс, с которым будем работать в дальнейшем.

Для того, чтобы задать нашему ассистенту голос, мы воспользуемся библиотекой для offline-синтеза речи pyttsx3. Она автоматически найдет голоса, доступные для синтеза на нашем компьютере в зависимости от настроек операционной системы (поэтому, возможно, что у вас могут быть доступны другие голоса и вам нужны будут другие индексы).

Также добавим в в main-функцию инициализацию синтеза речи и отдельную функцию для её проигрывания. Чтобы убедиться, что всё работает, сделаем небольшую проверку на то, что пользователь с нами поздоровался, и выдадим ему обратное приветствие от ассистента:

На самом деле, здесь бы хотелось самостоятельно научиться писать синтезатор речи, однако моих знаний здесь не будет достаточно. Если вы можете подсказать хорошую литературу, курс или интересное документированное решение, которое поможет разобраться в этой теме глубоко — пожалуйста, напишите в комментариях.

Шаг 3. Обработка команд

Теперь, когда мы «научились» распознавать и синтезировать речь с помощью просто божественных разработок наших коллег, можно начать изобретать свой велосипед для обработки речевых команд пользователя 😀

В моём случае я использую мультиязычные варианты хранения команд, поскольку у меня в демонстрационном проекте не так много событий, и меня устраивает точность определения той или иной команды. Однако, для больших проектов я рекомендую разделить конфигурации по языкам.

Для хранения команд я могу предложить два способа.

1 способ

Можно использовать прекрасный JSON-подобный объект, в котором хранить намерения, сценарии развития, ответы при неудавшихся попытках (такие часто используются для чат-ботов). Выглядит это примерно вот так:

Такой вариант подойдёт тем, кто хочет натренировать ассистента на то, чтобы он отвечал на сложные фразы. Более того, здесь можно применить NLU-подход и создать возможность предугадывать намерение пользователя, сверяя их с теми, что уже есть в конфигурации.

Подробно этот способ мы его рассмотрим на 5 шаге данной статьи. А пока обращу ваше внимание на более простой вариант

2 способ

Можно взять упрощенный словарь, у которого в качестве ключей будет hashable-тип tuple (поскольку словари используют хэши для быстрого хранения и извлечения элементов), а в виде значений будут названия функций, которые будут выполняться. Для коротких команд подойдёт вот такой вариант:

Для его обработки нам потребуется дополнить код следующим образом:

В функции будут передаваться дополнительные аргументы, сказанные после командного слова. То есть, если сказать фразу «видео милые котики«, команда «видео» вызовет функцию search_for_video_on_youtube() с аргументом «милые котики» и выдаст вот такой результат:

Пример такой функции с обработкой входящих аргументов:

Ну вот и всё! Основной функционал бота готов. Далее вы можете до бесконечности улучшать его различными способами. Моя реализация с подробными комментариями доступна на моём GitHub.

Ниже мы рассмотрим ряд улучшений, чтобы сделать нашего ассистента ещё умнее.

Шаг 4. Добавление мультиязычности

Чтобы научить нашего ассистента работать с несколькими языковыми моделями, будет удобнее всего организовать небольшой JSON-файл с простой структурой:

В моём случае я использую переключение между русским и английским языком, поскольку мне для этого доступны модели для распознавания речи и голоса для синтеза речи. Язык будет выбран в зависимости от языка речи самого голосового ассистента.

Для того, чтобы получать перевод мы можем создать отдельный класс с методом, который будет возвращать нам строку с переводом:

В main-функции до цикла объявим наш переводчик таким образом: translator = Translation()

Теперь при проигрывании речи ассистента мы сможем получить перевод следующим образом:

Как видно из примера выше, это работает даже для тех строк, которые требуют вставки дополнительных аргументов. Таким образом можно переводить «стандартные» наборы фраз для ваших ассистентов.

Шаг 5. Немного машинного обучения

А теперь вернёмся к характерному для большинства чат-ботов варианту с JSON-объектом для хранения команд из нескольких слов, о котором я упоминала в пункте 3. Он подойдёт для тех, кто не хочет использовать строгие команды и планирует расширить понимание намерений пользователя, используя NLU-методы.

Грубо говоря, в таком случае фразы «добрый день«, «добрый вечер» и «доброе утро» будут считаться равнозначными. Ассистент будет понимать, что во всех трёх случаях намерением пользователя было поприветствовать своего голосового помощника.

С помощью данного способа вы также сможете создать разговорного бота для чатов либо разговорный режим для вашего голосового ассистента (на случаи, когда вам нужен будет собеседник).

Для реализации такой возможности нам нужно будет добавить пару функций:

А также немного модифицировать main-функцию, добавив инициализацию переменных для подготовки модели и изменив цикл на версию, соответствующую новой конфигурации:

Однако, такой способ сложнее контролировать: он требует постоянной проверки того, что та или иная фраза всё ещё верно определяется системой как часть того или иного намерения. Поэтому данным способом стоит пользоваться с аккуратностью (либо экспериментировать с самой моделью).

Заключение

На этом мой небольшой туториал подошёл к концу.

Мне будет приятно, если вы поделитесь со мной в комментариях известными вам open-source решениями, которые можно внедрить в данный проект, а также вашими идеями касательно того, какие ещё online и offline-функции можно реализовать.

Документированные исходники моего голосового ассистента в двух вариантах можно найти здесь.

P.S: решение работает на Windows, Linux и MacOS с незначительными различиями при установке библиотек PyAudio и Google.

Кстати, тех, кто планирует строить карьеру в IT, я буду рада видеть на своём YouTube-канале IT DIVA. Там вы сможете найти видео по тому, как оформлять GitHub, проходить собеседования, получать повышение, справляться с профессиональным выгоранием, управлять разработкой и т.д.

Источник

Python: как создать простейшего голосового помощника?

Для создания голосового помощника не нужно обладать большими знаниями в программировании, главное понимать каким функционалом он должен владеть. Многие компании создают их на первой линии связи с клиентом для удобства, оптимизации рабочих процессов и наилучшей классификации звонков.

В данной статье представлена программа, которая может стать основой для Вашего собственного чат-бота, а если точнее – голосового помощника для распознавания голоса и последующего выполнения команд. С ее помощью мы сможем понять принцип работы наиболее часто встречаемых голосовых помощников.

Для начала объявим необходимые нам библиотеки:

Также не забудем вести лог файл, который понадобится нам, если же мы все-таки решим улучшить бота для работы с нейронной сетью. Многие компании использую нейронную сеть в своих голосовых помощниках для понимания эмоций клиента и соответствующего реагирования на них. Также стоит не забывать, что с помощью анализа логов, мы сможем понять слабые места алгоритма бота и улучшить взаимодействие с клиентами.

В лог файл мы записываем время сообщения, автора (бот или пользователь) и собственно сам сказанный текст.

Выводим первое сообщение за авторством бота: Привет! Чем я могу вам помочь?

А с помощью такой процедуры в Jupyter Notebook мы можем озвучить через устройство воспроизведения, настроенное по умолчанию, сказанные слова:

Как озвучивать текст мы рассмотрели выше, но как же мы свой голос сможем превратить в текст? Тут нам поможет распознавание речи от Google и некоторые манипуляции с микрофоном.

Что может сделать наш помощник кроме того, чтобы нас слушать? Все ограничено нашей фантазией! Рассмотрим несколько интересный примеров.

Начнем с простого, пусть при команде открыть сайт – он откроет сайт (не ожидали?).

Иногда полезно послушать свои слова, да чужими устами. Пусть бот еще умеет и повторять за нами:

Пусть еще и собеседником будет, но начнем мы пока только со знакомства:

Мы также можем попросить голосового помощника назвать случайное число в выбранных нами пределах в формате: Назови случайное число от (1ое число) до (2ое число).

Для того, чтобы завершить программу, достаточно только попрощаться с ботом:

А чтобы все это работало беспрерывно, мы создаем бесконечный цикл.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать голосового помощника на питоне, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать голосового помощника на питоне", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать голосового помощника на питоне:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *