Перевод корней в степени и обратно: объяснение, примеры
Часто преобразование и упрощение математических выражений требует перехода от корней к степеням и наоборот. Данная статья рассказывает о том, как осуществлять перевод корня в степень и обратно. Рассматривается теория, практические примеры и наиболее распространенные ошибки.
Переход от степеней с дробными показателями к корням
Ответ вытекает из самого определения степени!
При этом, обязательно должно выполнятся условие:
Дробная степень числа нуль определяется аналогично, однако в этом случае число m принимается не целым, а натуральным, чтобы не возникло деления на 0 :
Как представить корень в виде степени?
Обратная замена корней степенями, когда вместо выражения с корнем записывается выражения со степенью, также возможна. Просто перевернем равенство из предыдущего пункта и получим:
Можно ли вообще преобразовать такие выражения со степенями? Да, если произвести некоторые предварительные преобразования. Рассмотрим, какие.
В случае с корнем нечетной степени из отрицательного числа, можно записать:
Разберемся теперь, как корни, под которыми содержатся выражения, заменяются на степени, содержащие эти выражения в основании.
Таким образом, в рассмотренном примере преобразование вида A m n = A m n является преобразованием, сужающим ОДЗ, а из-за неаккуратного применения формулы A m n = A m n нередко возникают ошибки.
Сведем все эти правила в таблицу и приведем несколько примеров их использования.
Приведем еще один пример с корнями и степенями.
Пример. Перевод корня в степень
Степень с рациональным показателем
Мы уже знакомы с понятием степени с целым показателем. Давайте разберемся, что такое степень с рациональным показателем.
Рациональный показатель – это выражение вида \(\frac
\), где \(p\)-некоторое целое число, а \(q\) – натуральное число, причем \(q\ge2\).
Положительное число \(a\) в рациональной степени \(\frac
\) является арифметическим корнем степени \(q\) из числа \(a\) в степени \(p\):
Обращаем ваше внимание, что
Неважно в каком порядке – сначала извлечь корень или возвести в степень, от этого смысл выражения не теряется. Как удобнее, так и считайте.
Пусть есть некоторое положительное число \(a\) и целое число \(p\), тогда справедливы следующие соотношения:
где \(k\) и \(q\) – натуральные числа большие 1.
Давайте попробуем их доказать:
Из определения степени с рациональным показателем следует, что:
Опять из определения и свойства корня n-й степени следует:
Третья формула на наш взгляд очевидна, просто сократить степень справа и получите исходное выражение.
Свойства степени с рациональным показателем
Пусть \(a\) и \(b\) – некоторые положительные числа, а числа \(m\) и \(n\) – рациональные числа. Тогда выполняются соотношения:
При умножении степеней с рациональным показателем и одинаковым основанием их показатели степени складываются.
При делении степеней с рациональным показателем и одинаковым основанием их показатели степени вычитаются.
При возведении степени с рациональным показателем в степень с рациональным показателем их показатели перемножаются.
Степень с рациональным показателем от произведения двух положительных чисел равна произведению степеней этих множителей.
Степень с рациональным показателем от частного двух положительных чисел равна частному степеней этих чисел.
И еще два очень важных свойства степеней. Они вам понадобятся при решении показательных уравнений и неравенств.
Пусть опять есть некоторое положительное число \(a>1\) и рациональные числа \(n\) и \(m\).
При \(n \gt 0\) \(a^n \gt 1\),
При \(n \lt 0\) \(0 \lt a^n \lt 1\).
Если же \(a \gt 1\) и \(n \gt m\), то
Если \( 0 \lt a \lt 1 \) и \(n \gt m\), то
Разберем несколько примеров:
Так как основание степени больше единицы \(3 \gt 1\) и \(\frac<1> <3>\lt \frac<1><2>\).
Так как \(0 \lt \frac<1> <5>\lt 1\) и \(\frac<1> <3>\lt \frac<1><2>\)
Описание урока
От успешной сдачи государственного экзамена по математике зависит поступление в высшее учебное заведение. Степень с рациональным показателем – важная тема, изучение которой необходимо для успешной подготовки к ЕГЭ. От того, насколько хорошо она освоена, зависит в будущем, насколько легко будет решать уравнения и производить более сложные операции с числами. Задание номер 15 строится на умении работать с такими степенями. Чтобы понимать, о чём идёт речь, стоит ознакомиться с определением степени с рациональным показателем и её основными свойствами, которые пригодятся и при работе с функциями.
Важно запомнить, что число А не должно быть меньше 0, а число q не равно 1.
Свойства степени с рациональным показателем
Знание свойств степеней с показателем, равным рациональному числу, облегчает работу с уравнениями и функциями, где содержатся такие выражения. Внимательно их изучив, можно достаточно быстро выполнять задания, что немаловажно в процессе написания ЕГЭ.
Одно из основных свойств: произведение двух степеней с одинаковым основанием равно основанию в степени, равной сумме степеней двух множителей.
При делении степеней с рациональным показателем из показателя делимого вычитают показатель делителя. У степени с рациональным показателем есть и другие свойства, которые также присущи степени с обыкновенным показателем. Их легко запомнить, а чтобы примеры помогли внимательнее рассмотреть свойства, посмотрите видео, в котором о них рассказывается подробнее.
Решение степеней с рациональными показателями
Степень с рациональным показателем — что это
Рациональным показателем называют такое выражение, которое записано в виде:
В данном понятии p является неким целым числом, q относится к натуральным числам, и отлично от 2.
Число a, которое больше нуля, в рациональной степени p q представляет собой арифметический корень степени q из числа a в степени p:
Здесь важно обратить внимание на то, что:
Основное выражение не теряет смысл, независимо от того, какое действие выполняется в первую очередь, извлечение корня или возведение в степень. Можно сделать любой выбор, чтобы упростить решение задачи.
Рассмотрим несколько самостоятельных примеров:
8 2 3 = 8 2 3 = ( 8 3 ) 2 = 2 2 = 4 ;
Предположим, что имеются некие числа: а — положительное, и p — из множества целых чисел. В таком случае, справедливы следующие соотношения:
где k и q — из множества натуральных чисел, которые больше единицы.
Теорему достаточно просто доказать. Вспомним определение степени, имеющей рациональный показатель. Тогда запишем:
a p q = a p q = ( a p ) p = ( a 1 q ) p
С помощью объяснения и свойства корня n-й степени можно выполнить следующие преобразования:
a p q = a p q = a p * k q * k = a p * l q * k
Третья из записанных в теореме формул не нуждается в доказательстве. Достаточно лишь выполнить сокращение степени в правой части, чтобы получилось начальное выражение.
Разберем решение некоторых примеров:
8 4 3 = ( 8 1 3 ) 4 = 2 4 = 16 ;
4 15 5 = 4 3 1 = 4 3 = 64 ;
Свойства степени
Предположим, что имеется пара чисел a и b. Пусть данные числа больше нуля. Возьмем также два рациональных числа и обозначим их, как m и n. Используя исходные данные, сформулируем свойства степеней с рациональным показателем:
Существует еще пара достаточно важных и полезных свойств, характерных для степени с рациональным показателем. Данные закономерности пригодятся при решении задач на показательные уравнения и неравенства. Представим, что имеется пара рациональных чисел. Обозначим их за n и m. Введем некое число а, которое является положительным и больше единицы. Запишем свойства:
В качестве примера применения записанных свойств на практике попробуем упростить несколько несложных выражений:
Здесь важно, что степень обладает основанием, которое больше единицы:
( 1 5 ) 1 3 > ( 1 5 ) 1 2
Решение степеней с рациональными показателями
Дано несколько выражений, которые требуется упростить:
Используя свойства степени с рациональным показателем, выполним необходимые преобразования:
( 3 3 8 ) 2 3 = 27 8 2 3 = 27 8 3 2 = 3 2 2 = 9 4 = 2 1 4
Дано соотношение, справедливость которого нужно доказать:
Аналогичным образом можно определить, что все другие слагаемые в левой части меньше единицы. В правой части получим:
Ответ: соотношение доказано.
Дано соотношение, справедливость которого требуется доказать:
Аналогичным образом, оставшиеся в левой части слагаемые будут больше единицы. В правой части получим:
Ответ: соотношение доказано
Найти значение следующего выражения:
( 1 + 3 5 ) 2 = 1 + 6 5 + ( 3 5 ) 2 = 1 + 6 5 + 45 = 46 + 6 5
Примеры задач с ответами
Упростить следующие выражения:
7 2 3 = 7 2 3 = 49 3
Даны выражения, которые необходимо упростить:
Дано выражение, значение которого нужно вычислить:
Введем обозначение и вычислим следующее выражение:
Корни и степени
Здесь — основание степени, — показатель степени.
Степень с натуральным показателем
Проще всего определяется степень с натуральным (то есть целым положительным) показателем.
Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.
Возвести число в куб — значит умножить его само на себя три раза.
Возвести число в натуральную степень — значит умножить его само на себя раз:
Степень с целым показателем
Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.
Определим также, что такое степень с целым отрицательным показателем.
Заметим, что при возведении в минус первую степень дробь переворачивается.
Свойства арифметического квадратного корня:
Кубический корень
Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.
Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.
Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.
Сразу договоримся, что основание степени больше 0.
При этом также выполняется условие, что больше 0.
Запомним правила действий со степенями:
— при перемножении степеней показатели складываются
— при делении степени на степень показатели вычитаются
— при возведении степени в степень показатели перемножаются
Ты нашел то, что искал? Поделись с друзьями!
Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:
Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.
Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
Это полезно
В нашей статье вы найдете всю необходимую теорию для решения задания №9 ЕГЭ по теме «Графики функций». Это задание появилось в 2022 году в вариантах ЕГЭ Профильного уровня.
Алгебра
А Вы уже инвестируете?
Слышали про акцию в подарок?
Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб
План урока:
Степень с рациональным показателем
Напомним, что в 7 классе мы впервые познакомились с понятием степени, причем тогда рассматривались случаи, когда показателем степени является натуральное число. В 8 классе понятие степени было расширено, теперь в него включались случаи, когда показатель являлся целым числом. Настоятельно рекомендуем перечитать соответствующие уроки. Сегодня же мы можем сделать ещё один шаг вперед и рассмотреть степени с рациональными показателями.
При расширении понятия степени важно обеспечить то, чтобы уже известные правила работы с целыми степенями работали и для дробных показателей. Одно из свойств степеней выглядит так:
Подставим в эту формулу следующие значения переменных:
Мы специально выбрали эти числа такими, чтобы произведение mn равнялось единице:
Подставляем эти значения:
(3 1/6 ) 6 = 3 1/6 • 6 = 3 1 = 3
Однако по определению корня n-ой степени число, дающее при возведении в шестую степень тройку, является корнем шестой степени из трех. То есть можно записать:
С помощью подобных преобразований нам удалось указать, чему равно число, возведенное в дробную степень. Аналогично можно показать, что для любого а > 0 справедлива формула:
Действительно, если возвести левую часть в n-ую степень, то получим:
(а 1/ n ) n = a 1/ n • n = a
Значит, по определению корня n-ой степени
Ограничение а > 0 необходимо для того, чтобы не рассматривать случаи, когда подкоренное выражение является отрицательным.
C учетом этого выполним преобразование:
В результате несложных преобразований нам удалось получить формулу, позволяющую возводить число в степень, у которой рациональный показатель!
Приведем несколько примеров вычисления дробных степеней:
Часто при вычислениях удобнее сначала извлечь корень из числа, а потом полученный результат возвести в степень:
Напомним, что одну и ту же дробь можно представить разными способами, например:
1/2 = 2/4 = 3/6 = 4/8 = 5/10 = 0,5
Возникает вопрос – изменится ли значение дробной степени, если мы приведем дробь к новому знаменателю? Очевидно, что нет, но всё же убедимся в этом на примере. Сначала возведем в степень 1/2 число 25:
Теперь заменим дробь 1/2 на идентичную ей дробь 2/4:
Согласитесь, возводить число 81 в 25-ую степень не очень легко! Поэтому поступим иначе. Сократим дробь 25/100:
0,25 = 25/100 = 25/(25•4) = 1/4
Теперь вычисления будет более простыми:
Вообще легко запомнить, что 0,25 = 1/4, а 0,5 = 1/2. Замена десятичных дробей обыкновенными дробями сильно упрощает вычисления. Приведем примеры:
Свойства дробных степеней и операции с ними
Когда мы изучали степени с целыми показателями, мы выяснили, что правила работы с ними ничем не отличаются от правил работы со степенями с натуральным показателем. Оказывается, эти же правила работают и для степеней с рациональным показателем. Сформулируем основные свойства дробных степеней.
Например, справедливы следующие действия:
5 0,5 •5 2,5 = 5 0,5 + 2,5 = 5 3 = 125
19 5/3 •19 1/3 = 19 5/3 + 1/3 = 19 2 = 361
29,36 –0,37 •29,36 1,37 = 29,36 –0,37 + 1,37 = 29,36 1 = 29,36
Вот несколько примеров подобных вычислений:
17 4,5 :17 3,5 = 17 4,5–3,5 = 17 1 = 1
4 9,36 :4 6,36 = 4 9,36–6,36 = 4 3 = 64
20 12 :20 14 = 20 12–14 = 20 –2
Проиллюстрируем это правило примерами:
(6 0,25 ) 8 = 6 0,25•8 = 6 2 = 36
(9 3/2 ) 2 = 9 (3/2)•2 = 9 3 = 729
(25 4 ) 0,125 = 25 4•0,125 = 25 0,5 = 5
Покажем, как можно применять данное правило:
4 1/6 •16 1/6 = (4•64) 1/6 = 64 1/6 = 2
0,5 1,5 •50 1,5 = (0,5•50) 1,5 = 25 1,5 = 25 1+0,5 = 25 1 •25 0,5 = 25•5 = 125
4,9 0,5 •10 0,5 = (4,9•10) 0,5 = 49 0,5 =7
Это правило можно применять следующим образом:
360 0,5 :10 0,5 = (360:10) 0,5 = 36 0,5 = 6
500 3 :50 3 = (500:50) 3 = 10 3 = 1000
6,25 1/4 :0,01 1/4 = (6,25:0,01) 1/4 = 625 1/4 = 5
Заметим, что степени очень удобны тем, что с их помощью легко упростить работу с корнями, ведь если
то верное и обратное:
То есть любое выражение с корнями в виде степени с рациональным показателем.
Пример. Вычислите значение выражения
Решение. Корней много, поэтому для удобства заменим их степенями
Получили тоже самое выражение, но в более компактном виде. Посчитаем его значение:
(9 1/4 ) 1/5 •3 9/10 = (9 0,25 ) 0,2 •3 0,9 = 9 0,25•0,2 •3 0,9 = 9 0,05 •3 0,9 = (3 2 ) 0,05 •3 0,9 =
=3 2•0,05 •3 0,9 = 3 0,1 •3 0,9 = 3 0,1•0,9 = 3 1 = 3
Пример. Упростите выражение
(81 n+1 – 65•81 n ) 0,25
Решение. Степень 81 n+1 можно представить как произведение:
81 n+1 = 81 n •81 1 = 81•81 n
С учетом этого можно записать:
(81 n+1 – 65•81 n ) 0,25 = (81•81 n – 65•81 n ) 0,25 = (81 n (81 – 65)) 0,25 =
= (81 n •16) 0,25 = 81 0,25 n •16 0,25 = 81 0,25 n •16 1/4 = 2•81 0,25 n
Сравнение степеней
Напомним, что из двух корней n-ой степени больше тот, у которого больше подкоренное выражение:
Отсюда следует вывод, что если a 1/ n 1/ n
теперь возведем каждую часть этого неравенства в степень m. Тогда получим неравенство:
Получили, что из двух степеней с одинаковыми показателями меньше та, у которой меньше основание (правила сравнения будем нумеровать, чтобы на них удобнее было ссылаться):
В частности, справедливы следующие неравенства:
Здесь мы рассматривали случаи, когда показатель степени является положительным числом. А что делать, если он отрицательный? Тогда степень следует «перевернуть», воспользовавшись уже известной вам формулой:
Пример. Сравните выражения с рациональным показателем степени:
20 –3,14 и 50 –3,14
Решение. Избавимся от знака минус в показателе:
20 –3,14 = (1/20) 3,14 = 0,05 3,14
50 –3,14 = (1/50) 3,14 = 0,02 3,14
Получили две степени с одинаковым и, что принципиально важно, положительным показателем. Из них больше та, у которой больше основание. То есть из неравенства 0,02 3,14 3,14
Особенным является случай, когда показатель степени равен нулю. Напомним, что любое число в нулевой степени (кроме самого нуля) равно единице, а выражение 0 0 не имеет смысл. Это значит, что числа в нулевой степени равны друг другу, даже если у них разные основания:
18,3546 0 = 12,3647 0 = 1
Несколько сложнее сравнивать числа, у которых одинаковые основания, но различные показатели. Здесь возможны три случая – основание либо равно единице, либо больше неё, либо меньше неё.
На основании этого правила можно записать, что:
Единица в любой степени равна самой себе. Поэтому, если у двух чисел в основании записана именно она, то они должны быть равны друг другу:
1 –7,56 = 1 –0,15 = 1 0,236 = 1 521,36 = 1
0,5 = 1/2 = 1/(2 1 ) = 2 –1
0,5 7,6 = (2 –1 ) 7,6 = 2 –7,6
0,5 8,9 = (2 –1 ) 8,9 = 2 –8,9
Такие числа мы уже умеем сравнивать. Так как
Например, справедливы неравенства:
0,57 15,36 > 0,57 16,47
Рассмотрим чуть более сложное задание на сравнение степеней, где надо использовать одновременно несколько правил.
Пример. Докажите, что
0,9 0,9 + 0,8 0,8 + 0,7 0,7 1/3
Решение. Напрямую вычислить значение выражений в правой и левой части затруднительно. Однако мы можем усиливать неравенство, чтобы получить более простые выражения.
Усилить неравенство – это значит увеличить его меньшую или уменьшить большую часть. Например, неравенство 10 1/3 :
Также ясно, что 27 1/3 1/3 (правило 1). Усилим исходное неравенство:
0,9 0,9 + 0,8 0,8 + 0,7 0,7 1/3 (1)
Действительно, если (1) справедливо, то мы можем записать двойное неравенство
0,9 0,9 + 0,8 0,8 + 0,7 0,7 1/3 1/3
Опустив здесь среднюю часть, получим исходное неравенство. Так как 27 1/3 = 3, мы можем переписать (1) так:
0,9 0,9 + 0,8 0,8 + 0,7 0,7 0,8 0,8 (снова используем правило 1). С другой стороны, 0,9 0,8 0,7 (правило 3). Значит, можно записать двойное неравенство:
Их левые части стоят в (2). Следовательно, можно усилить (2):
0,9 0,7 + 0,9 0,7 + 0,9 0,7 0,7 0,7 0,7 :
Из правила 1 следует, что (4) справедливо. Но мы получили его, усиливая исходное неравенство. Из справедливости более сильного неравенства следует и справедливость более слабого. Следовательно, из справедливости (4) вытекает верность исходного неравенства, которое и надо было доказать.