Главная » Правописание слов » Как пишется одна десятая цифрами в столбик

Слово Как пишется одна десятая цифрами в столбик - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

1/10 часть это сколько? Одна десятая, это сколько?

1/10 часть это сколько? Одна десятая, это сколько?

Одна десятая часть подразумевает, что что-то целое было поделено на десять равных между собой частей и вот одна такая часть и будет равна одной десятой. Если проще, то чтобы найти одну десятую часть числа нужно это число разделить на десять. Например, одна десятая от 1000 это 100. Если нужно найти одну десятую от дроби например одня десятая часть от 19/23 то тогда эту дробь нужно умножить на дробь 1/10 и в итоге мы получим что одна десятая часть от 19/23 это 19/230. Также стоит отметить что одна десятая часть числа соответствует 10% от этого числа, т.е. одна десятая часть числа это 10% от этого числа.

Дробь 1/10 — это очень распространенная и часто применяемая величина величина в технике, в науке и в жизни людей, которая определяет одну десятую часть отчего-то целого.

Например 1/10 часть:

Обычная дробь «1/10» ещё записывается как десятичная дробь «0,1» или как десять процентов «10%».

Чтобы выяснить, сколько составляет одна десятая часть от чего-то, нужно это «что-то» поделить на десять одинаковых частей, и забрать одну из этих частичек — что и составит 1/10 часть.

Примеры десятой части смотри на картинке ниже.

Есть целое число и это единица. А нам нужно разобраться с 1/10 частью этого числа. Как видно из этой дроби нам нужно найти десятую часть от числа, а для этого нужно просто это число разделить на десять. Если число это 1, то 1/10 часть будет 0,1 или же в процентах это будет 10 % от числа.

Дробь одна десятая обозначается вот так:

Одна десятая, как и одна сотая часть самые известные и применяемые доли целого.

Чтобы найти 1/10 от чего-то, надо разделить имеющееся (количество, число) на 10 и взять одну часть.

Если 1/10 часть выразить в процентах, то это будет 10%.

Например: 1/10 часть от метра равна 0,1 метра или 1 дм. 1/10 часть от десятилитрового ведра равна 1 литру.

Чтобы рассчитать одну десятую нам нужно взять число и разделить на десять, это и будет десятая часть.

Также это работает и с другими предметами, числами и так далее.

чтобы возвести дробь в степень надо возвести в степень и числитель и знаменатель

Результатом возведения дроби в степень будет новая дробь у которой числитель равен числителю этой дроби в возведенному в степень, а знаменателем будет знаменатель этой дроби в возведенный в степень.

(¾)³=3³/4³=27/64

Так и с дробями. Дроби с разными знаменателями сродни измерению в разных системах. Сами по себе они могут так жить преспокойно, со своими уникальными знаменателями, пока не придёт время их сравнить, или сложить. Вот тут то и нужно их привести к чему-то одному, ‘компромиссному’. При переводе к единому знаменателю числители у этих дробей и выйдут тогда из ‘сумерка’, показав свой истинный вес.

Также добавлю, что для четных чисел ответ на такое же задание будет 0, так как там присутствует как минимум одно число заканчивающееся на 0, например 10.

Здесь можно только сократить, по формуле разности квадратов. Нужно представить в виде c=(√с)^2, и 3=(√3)^2. Тогда числитель (с-3) можно представить в виде ((√с)^2-(√3)^2) и разложить его на множители в виде (√с-√3)*(√с+√3). Теперь в числителе есть одинаковый со знаменателем множитель, и на него можно сократить. Остаётся (√с-√3).

Ну если это уравнение с параметром, то нужно еще доп. сведение, если трансцендентное уравнение, то решение проблематичное, ибо надо заниматься подстановкой.

Однако кое-что все же ясно.

X надо найти, а вот «a» яко бы известно.

1) Нарисовать график, допустим y=3,335;

P.P.S. Для решения используем калькулятор или ПО Excel, что бы облегчить ПодбоР! корня. Также используем метод последовательных приближений с заданным интервалом вдоль явного решение, которое соответственно равно g(x)=y=3,335.

Т.к. f(x)=x/a начнем подбор x и «а» одновременно.

Продолжая последующие итерации, постоянно увеличивая приближения от десятых до сотых и тысячных, находим значение константы «a» и корня x.

P.P.P.S Если же это уравнение с параметром или что более верно уравнение с буквенной частью, то все еще проще:

Напоследок, безусловно для любого решения «a» не равно нулю, в математике это важно, но все же не считаю я нужным это указать, т.к. мы явно установили вид кривой и явно указали 1 точку пересечения, если б деление было бы на ноль возможно, то первые два утверждения были бы автоматически не верны.

Источник

Как читать десятичные дроби

В первую очередь обсудим вид десятичной дроби. Каждая цифра после запятой имеет своё название.
Десятые, сотые, тысячные, десятитысячные

Десятые, сотые и тысячные

Попробуем прочитать десятичную дробь из примера выше. Чтобы правильно прочитать десятичную дробь нужно:

Прочитать число слева от запятой и добавить слово «целыx», так как слева от запятой находится целая часть десятичной дроби. Читаем: «сорок три целых».

Затем прочитать число справа от запятой: «семь тысяч пятьсот шестьдесят девять».

Значит, полное название дроби звучит так:

43,7569 — сорок три целых семь тысяч пятьсот шестьдесят девять десятитысячных.

Справа от запятой после самой последней правой цифры отличной от нуля можно добавлять сколько угодно нулей. От этого значение десятичной дроби не изменится.

Таким же образом если в конце десятичной дроби отбросить ноль, то мы получим такую же по значению десятичную дробь.

Нули можно добавлять (убирать) только после самой последней правой отличной от нуля цифры. Нули между цифрами в числе убирать нельзя.

Источник

Десятичные дроби

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

Обучение на курсах по математике — отличный способ закрепить полученные знания на практике и подтянуть сложные темы.

Как записать десятичную дробь

Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.

Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.

Пример 2. Перевести 37/1000 в десятичную дробь.

Ответ: 37/1000 = 0,037.

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой? Читается, как
одна цифра — десятых; 1,3 — одна целая, три десятых;
две цифры — сотых 2,22 — две целых, двадцать две сотых;
три цифры — тысячных; 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных; 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Преобразование десятичных дробей

Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!

Как перевести десятичную дробь в проценты

Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.

А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:

Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.

2/5 = 0,4
0,4 · 100% = 40%

8/25 = 0,32
0,32 · 100% = 32%

Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:

Преобразование десятичных дробей

Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.

Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).

Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!

Пример 1. Перевести 5,4 в смешанное число.

Пример 2. Перевести 4,005 в смешанное число.

Ответ: 4,005 = 4 1/200.

Пример 3. Перевести 5,60 в смешанное число.

Как перевести десятичную дробь в обыкновенную

Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:

Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!

Действия с десятичными дробями

С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.

Как разделить десятичную дробь на натуральное число

Пример 2. Разделить 183,06 на 45.

Ответ: 183,06 : 45 = 4,068.

Как разделить десятичную дробь на обыкновенную

Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.

Пример 1. Разделить 0,25 на 3/4.

Пример 2. Разделить 2,55 на 1 1/3.

Ответ: 2,55 : 1 1/3 = 1 73/80.

Как умножить десятичную дробь на обыкновенную

Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.

Пример 1. Умножить 2/5 на 0,8.

Пример 2. Умножить 0,28 на 6 1/4.

Ответ: 0,28 ∗ 6 1/4 = 0,8.

Источник

6. Числа и знаки

6.1.2. Однозначные числа

Могут быть написаны прописью или в цифровой форме.

Словесная форма чисел (прописью). Рекомендуется в следующих случаях:

1. Когда однозначные числа стоят в косвенных падежах не при единицах величин, денежных единицах, поскольку в подобных случаях цифровая форма усложнила бы чтение (поначалу читатель мысленно произносит цифру в им. падеже и лишь при дальнейшем чтении понимает, что падеж должен быть иным, а это ведет к ненужной остановке, замедляет чтение). Напр.:

Лабораторию следует оборудовать четырьмя мойками.

Лабораторию следует оборудовать 4 мойками.

2. Когда стечение нескольких чисел в цифровой форме может затруднить чтение, а вставить между этими числами слово или изменить порядок слов, чтобы развести числа, сложно или нежелательно. Напр.:

. пять 30-местных автобусов.

. 5 30-местных автобусов.

Если вставить слово или изменить порядок слов несложно, то предпочтительнее сделать это, чем менять цифровую форму числа на словесную. Напр.: . 25 новых 30-местных автобусов.

3. Когда количественное числительное начинает собой предложение, поскольку при цифровой форме исчезает, как правило, прописная буква в первом слове предложения, служащая для читателя сигналом о его начале (одна предшествующая точка — слабый сигнал для этого). Напр.:

. при такой планировке. Пять станков размещают..

. при такой планировке. 5 станков размещают.

Во избежание разнобоя в написании количественных числительных, стоящих в начале и середине предложения, желательно по возможности перестроить предложение, начинающееся числом, так, чтобы последнее перешло в середину. Напр.: . при такой планировке. Размещают 5 станков.

Цифровая форма. Рекомендуется в следующих случаях:

1. Когда однозначные целые числа, даже в косвенных падежах, стоят в ряду с дву- и многозначными, поскольку при восприятии ряда чисел читателю, как правило, не требуется мысленно переводить их в словесную форму.

За сериями из 3, 5, 12 упражнений следовали.

За сериями из трех, пяти, двенадцати упражнений следовали.

За сериями из трех, пяти, 12 упражнений следовали.

2. Когда однозначные целые числа образуют сочетание с единицами физ. величин, денежными единицами и т. п. Напр.:

При массе до семи кг (до семи килограммов).

Цена до семи р. (до семи рублей).

6.1.3. Многозначные целые числа

Словесная форма чисел. Эта форма рекомендуется при стечении двух чисел в цифровой форме и в случаях, когда предложение начинается числом. Если словесная форма чисел нежелательна, необходимо перестроить фразу, чтобы развести два числа или чтобы не начинать фразу числом, либо заменить точку точкой с запятой. Напр.:

. 3 200 двадцатитонных грузовиков;

. 3 200 20-тонных грузовиков…

. 3 200 грузовиков грузоподъемностью 20 т…

. более целесообразно. Двести пятьдесят станков размещают.

. более целесообразно. 250 станков.

. более целесообразно; 250 станков размещают.

. более целесообразно. Часть станков (250 из общего числа) размещают.

Цифровая форма чисел. Является для многозначных чисел предпочтительной в подавляющем большинстве случаев, поскольку она лучше, чем словесная форма, воспринимается читателями, более заметна, лучше запоминается.

Разбивка чисел в цифровой форме на группы. Такие числа делят пробелами на группы (по три цифры справа налево). Техн. правила набора дают указание разбивать на группы числа только начиная с 5-значных (см.: Наборные и фотонаборные процессы. М., 1983. П. 2.3.9), а «Основные математические обозначения (СЭВ PC 2625—70)» не делают исключения и для 4-значных чисел. Напр.:

Не разбиваются на группы цифры в числах, обозначающих год, номер (после знака номера), в числах обозначений марок машин и механизмов, нормативных документов (стандарты, техн. условия и т. п.), если в документах, устанавливающих эти обозначения, не предусмотрена иная форма написания. Напр.: В 1999 году; № 89954; ГОСТ 20283. По-иному разбиваются номера телефонов (см. 6.1.6).

Точку в пробелах между цифровыми группами ставить запрещается.

Размер отбивки между цифровыми группами 2 п.

Словесно-цифровая форма чисел. Рекомендуется в следующих случаях:

1. Для обозначения крупных круглых чисел (тысяч, миллионов, миллиардов) в виде сочетания цифр с сокращением тыс., млн, млрд, поскольку читатель быстрее, легче воспримет 20 млрд, 12 млн, чем 20 000 000 000, 12 000 000.

Это правило в изданиях для специалистов распространяется и на сочетания крупных круглых чисел с обозначениями единиц физ. величин, денежных единиц и т. п. Напр.:

В изданиях для массового читателя рекомендуется в подобных случаях отказываться не от словесно-цифровой формы чисел, а от сокращенных обозначений единиц величин — заменять их полными наименованиями. Напр.: 20 млн километров, 500 тыс. вольт.

2. В устоявшихся названиях широко известных судебных процессов, чтобы не нарушать традиционное, привычное написание. Напр.: Процесс 193-х; Процесс 50-ти.

6.1.4. Дробные числа

Форма набора простых дробей. Простые дроби принято набирать цифрами на верхнюю и нижнюю линии шрифта: 3 /4. Но для набора именно таким образом наборщик должен получить письменное указание. Поэтому в оригинале простые дроби, написанные в одну линию через косую черту, следует пометить верхней или нижней дугой, повторить ее на боковом поле и рядом написать в кружке: дробь. Напр.:

В выборах приняла участие всего

Простую дробь набирают без отбивки от целого числа. Напр.: 5 1 /2.

Форма набора десятичных дробей. Дробная часть десятичных дробей, как и целые числа, делится пробелами на группы по 3 знака в каждой, но в обратном направлении по сравнению с целыми числами, т. е. слева направо. Напр.:

25,128 137; 20 158,675 8

Падеж существительных при дробных числах. Дробное число управляет существительным при нем, и поэтому последнее ставят в род. падеже ед. ч. Напр.: 1 /3 метра; 0,75 литра; 0,5 тысячи; 10 5 /6 миллиона.

Употребление слов часть, доля при дробных числах. Как правило, следует считать словесным излишеством употребление слов часть, доля после простых дробных чисел. Напр.:

1 /2 часть квадрата; 1 /5 доля площади

6.1.5. Интервал значений

Обозначение интервала значений. Для обозначения интервала значений ставят: а) многоточие; б) тире; в) знак ÷; г) предлог от перед первым числом и до — перед вторым. Напр.: Длиной 5. 10 метров; Длиной 5—10 метров; Длиной 5÷10 метров; Длиной от 5 до 10 метров.

Предпочтительным для изданий техн. и науч. (в области точных и естественных наук) лит. является стандартный знак многоточие (. ) между числами в цифровой форме.

В техн. лит. по традиции допустимо применять знак ÷ между числами в цифровой форме.

Тире и предлоги употребляются в изданиях гуманитарной и публицистической лит.

Употребление тире. Тире в качестве знака интервала значений рекомендуется ставить:

1. При словесной форме чисел (прописью) в изданиях худож. лит., а также близких к ней. Напр.: . длиной пять — десять метров. При этом, как и обычно между словами, тире, по техн. правилам набора, должно быть отбито от слов на 2 п., что и должно быть обозначено в оригинале.

2. В тексте изданий общественно-полит., гуманитарной и подобной лит. Напр.: План выполнялся на 110—115 процентов; 30—35 тыс. юношей и девушек. При этом, как и обычно, между числами в цифровой форме, тире, по техн. правилам набора, не должно отбиваться от цифр.

Не рекомендуется применять тире в качестве знака интервала значений, когда одно из значений величины положительное, а другое — отрицательное или когда оба значения отрицательные. Напр.:

Употребление дефиса. Когда два числа в словесной форме (прописью) означают не «от такого-то до такого-то числа», а «то ли то, то ли другое число», то между числительными ставят дефис. Напр.: У дома стояло машин пять-шестъ. В цифровой форме сохраняется тире: машин 5—6.

Крупные числа в интервале значений. При цифровой форме чисел необходимо сохранять нули в числе нижнего предела, чтобы читатель не мог принять его за меньшее значение. Напр.:

Высота 15 000—20 000 м

(если 1-е число 15 000)

При словесно-цифровой форме чисел допустимо опускать в числе нижнего предела обозначение тыс., млн., млрд., поскольку читатель воспринимает такие обозначения как составную часть единицы величины. Напр.:

Высота 20—30 тыс. метров.

Высота 20 тыс. — 30 тыс. метров.

Расположение чисел в интервале значений. Как правило, от меньшего к большему, от нижнего предела к верхнему. Исключение составляют взаимосвязанные относительные числа (во второй паре большее число может идти первым). Напр.: Это составляет 60—80 % всей массы груза. Остальные 40—20 %.

6.1.6. Номера телефонов

Их принято писать без знака номера, отделяя дефисом или пробелом по две цифры справа налево, напр.: 2-99-85-90; 2-95; 2 99 85 90.

Если в первой группе цифр телефонного номера одна цифра, ее допустимо объединять в одну группу со следующими двумя цифрами. Напр.: 299-85-90, 299 85 90, 295.

6.1.7. Номера домов

Их принято писать без знака номера. Напр.: Тверская, 13. Особенностью отличается написание двойных и литерных номеров.

Двойные номера. Их принято писать через косую черту: ул. Пушкина, 15/18.

Литерные номера. Литеру принято писать слитно с последней цифрой номера: Пушкинский пер., д. 7а.

6.1.8. Сочетания чисел с обозначениями единиц физических величин

500 т; 485 °С; 20 %; 15°; 45′; 15″

500т; 485°С; 20%; 15 °; 45 ‘; 15 «

В сочетании десятичных дробей с обозначениями единиц физ. величин эти обозначения следует помещать после всех цифр. Напр.:

586,5 кг; 30,2°; 36,6 °С; 10°20,5′

586 кг,5; 30°,2; 36°,6; 10°20′,5

Числовое значение с допуском или с предельными отклонениями при сочетании с обозначением единицы физ. величины требуется заключить в скобки либо обозначение единицы поставить и после числового значения, и после допуска или предельного отклонения. Напр.:

(10 ± 0,1) мм; 10 мм ± 0,1 мм

При интервале и перечне числовых значений одной физ. величины обозначение единицы физ. величины ставят только после завершающей цифры. Напр.:

От 50 до 100 м; 50-100 м;

Доски длиной 5, 10, 15 м

Доски длиной 5 м, 10 м, 15 м

6.1.9. Предельные отклонения линейных размеров

Указываются в такой форме:

6.1.10. Правила записи чисел в десятичной системе счисления

СТ СЭВ 543—77, который их установил, распространяет их только на нормативно-техн., конструкторскую и технологическую документацию. Но они вполне применимы и для многих изданий литературы по точным, естественным наукам и технике.

Обозначение точности числа. Для такого обозначения либо после числа ставят слово точно в круглых скобках; напр.: 3 600 000 Дж (точно), либо последнюю значащую цифру выделяют шрифтом полужирного начертания; напр.: 3,6 МДж.

Запись допускаемых отклонений. У последней значащей цифры и числа, и отклонения должен быть одинаковый разряд. Напр.:

17 ± 0,2; 17,00 ± 0,2; 12,13 ± 0,2;

12,1 ± 0,17; 46,405 ± 0,15;

Запись интервалов между числовыми значениями. Форма записи:

6.1.11. Правила округления чисел в десятичной системе счисления

Установлены СТ СЭВ 543—77.

Первая из отбрасываемых цифр (считая слева направо) меньше 5. Последняя сохраняемая цифра не меняется. Напр.:

12,23 12,2; 12,23 12

12,23 12,3

565,46 565

565,46 566

12 456 12·10 3

12 456 12 500 = 124·10 2

Первая из отбрасываемых цифр (считая слева направо) равна или больше 5. Последняя сохраняемая цифра увеличивается на единицу. Напр.:

0,145 0,15

0,152 0,2

565,46 6·10 2 600

0,156 0,16

0,162 0,2

565,46 5,7·10 2 570

Первая из отбрасываемых цифр (считая слева направо) равна 5, но получена в результате предшествующего округления. В этом случае округление зависит от способа округления первой из отбрасываемых цифр:

а) при ее округлении в большую сторону (напр., 0,15 получено при округлении 0,148) последняя сохраняемая цифра не меняется: 0,15 0,1;

б) при ее округлении в меньшую сторону (напр., 0,25 получено при округлении 0,252) последняя сохраняемая цифра увеличивается на единицу: 0,25 0,3.

Издания художественной и близких ей литератур

6.1.12. Словесная форма (прописью)

Эта форма, как правило, является рекомендуемой, поскольку цифры придают тексту деловой вид. Напр.: . Мне известен человек, который при росте примерно сто шестьдесят пять сантиметров носит обувь сорок пятого размера (В. Липатов).

6.1.13. Цифровая форма

Как исключение цифровая форма предпочтительна в следующих случаях:

1. Когда требуется имитировать документы, письма, вывески, поскольку пропись в них маловероятна и будет нарушать их «подлинность». Напр.: Будьте сегодня в 7 часов в беседке у ручья (записка Дубровского).

2. Когда в авт. тексте (не в прямой речи) приводятся номера домов, учреждений и т. п. и необходимо передать их в том виде, в каком они предстают на бланке, вывеске и т. п. Напр.: Здесь в столовой № 68, где раньше помещалось. кафе «Флорида». (Ильф И., Петров Е. Золотой теленок).

3. Когда в прямой речи встречается сложный номер и стремятся упростить его чтение. Напр.: «ЛД 46-71», — прочитал Иван номер (Р. Погодин).

4. Когда стремятся подчеркнуть (иногда иронически) особую точность чисел. Напр.: Солнце встало над холмистой пустыней в 5 часов 02 минуты 46 секунд (Ильф И., Петров Е. Золотой теленок).

6.2. Порядковые числительные

Издания деловой и научной литератур

6.2.1. Порядковые числительные в виде арабских цифр с наращением падежного окончания

Это преимущественная форма порядковых числительных в изданиях деловой и науч. лит. Исключение составляют только те объекты, которые принято обозначать римскими цифрами (см. 6.2.5), простые числительные типа первый раз, второй раз, а также те, что обозначают номера элементов издания и следуют за названием этих элементов, и даты (см.6.2.4).

6.2.2. Правила наращения падежного окончания

Падежное окончание в порядковых числительных, обозначенных арабскими цифрами, по закрепившейся традиции должно быть:

1. Однобуквенным, если последней букве числительного предшествует гласный звук. Напр.:

5-й (пятый, пятой), 5-я (пятая)

5-е (пятое, пятые), 5-м (пятым, пятом)

5-ый, 5-ой, 5-ая, 5-ое, 5-ые, 5-ым, 5-ом, 5-ых

2. Двухбуквенным, если последней букве числительного предшествует согласный. Напр.:

6.2.3. Наращения падежного окончания при нескольких порядковых числительных подряд

Написание порядковых числительных с наращением падежного окончания различается в этом случае в зависимости от их числа и формы разделения (соединения):

1. Если один за другим следуют два порядковых числительных, разделенных запятой или соединенных союзом, падежное окончание наращивают у каждого из них. Напр.: 1-й, 2-й ряды; 9-е и 10-е классы; 40-е и 50-е годы; в 8-й или 9-й класс.

2. Если один за другим следуют более двух порядковых числительных, разделенных запятой, точкой с запятой или соединенных союзом, падежное окончание наращивают только у последнего числительного. Напр.: Ученики 5, 7, 9-х классов; 8, 11, 15, 18-й секторы; 40, 60, 70-е годы; в 7, 8 или 9-й класс.

3. Если подряд идут два числительных через тире, то падежное окончание наращивают:

а) только у второго, когда оно одинаковое у обоих числительных, напр.: 50—60-е годы; в 20—30-х гг.;

б) у каждого числительного, когда падежные окончания у них разные или когда предшествующие первому числительному слова управляют только им и не связаны со вторым, напр.: в 20-м—30-х секторах; в начале 70-х-80-е годы.

6.2.4. Порядковые числительные в виде арабских цифр без наращения падежного окончания

К таким числительным относятся:

1. Номера томов, глав, страниц, иллюстраций, таблиц, приложений и т. п. элементов изданий, если родовое слово (название элемента: том, глава и т. д.) предшествует номеру. Напр.: в томе 6; главе 5; на с. 85; на рис. 8; в табл. 11; в прил. 6.

Однако если родовое название элемента стоит после числительного, последнее следует писать с наращением падежного окончания. Напр.: в 6-м томе; в 5-й главе; на 83-й странице.

2. Даты (годы и числа месяца), если слово год или название месяца следует за числом. Напр.: В 1997 году; 12 декабря 1997 года. Не: В 1972-м году; 12-го декабря 1997-го года.

Однако если слово год или название месяца опущено или поставлено перед числом, падежное окончание рекомендуется наращивать. Напр.: в мае, числа 20-го; год 1920-й; Грянул 1917-й; Концерт перенесли с 15 мая на 22-е; 20-го же апреля.

6.2.5. Порядковые числительные в виде римских цифр

Традиционно ими обозначают: 1) номера съездов, конференций, конгрессов и т. п. (XX съезд); 2) века (XXI век); 3) номера международных объединений (III Интернационал); 4) номера выборных органов (IV Государственная дума); 5) номера продолжающихся спортивных состязаний (XX Олимпийские игры); 6) номера в имени императора, короля (Петр I, Николай II, Карл V, Людовик XIV); 7) обозначения кварталов года (IV квартал). Могут обозначаться римскими цифрами квадранты, части или разделы книг и т. п.

Издания художественной и близких ей литератур

6.2.6. Преимущественная форма

Как правило, это словесная форма (пропись). Напр.: В двадцатом веке; в сорок пятом году. В репликах действующих лиц драматического произведения словесная форма порядковых числительных является единственной.

6.2.7. Цифровая или словесно-цифровая форма

Допускается в следующих случаях:

1. Когда требуется стилизовать внешний вид записки, письма, надписи. Напр.: . со свежим известковым лозунгом: «Привет 5-й окружной конференции. » (Ильф И., Петров Е. Золотой теленок).

2. Когда требуется назвать номер газеты, журнала, воинской части, а непрямая речь, в которую он включен, содержит элементы делового характера или когда сам номер сложен для воспроизведения прописью. Напр.: . билет 2-го займа с подмоченным углом (А. П. Чехов); Дивизия в составе 9-го мотополка «Вестланд», 10-го мотополка «Германия». (Эм. Казакевич).

3. Когда необходимо назвать год или число месяца в описательной части произведения. Напр.: В конце 1811 года, в эпоху нам достопамятную. (А. С. Пушкин).

Однако цифровая форма в подобных случаях не подходит, если точность датировки не имеет существенного значения, а окружающий текст не носит описательного характера или если год обозначается сокращенно. Напр.: Прошлого года двадцать второго марта вечером со мной случилось. (Ф. М. Достоевский); Революция семнадцатого года. (Ильф И., Петров Е.).

4. Когда в описательной части произведения требуется назвать имя императора, короля с номером в составе имени. Напр.: . Локоны. взбиты были, как парик Людовика XIV(Пушкин А. С. Барышня-крестьянка).

6.3. Числительные в составе сложных существительных и прилагательных

6.3.1. Издания художественной и близких ей литератур

Применяется, как правило, словесная форма (пропись). Напр.: пятидесятилетие; двадцатикилометровый переход.

6.3.2. Издания массовой не художественной литературы

Рекомендуется словесно-цифровая форма (число в цифровой форме и присоединяемое дефисом существительное или прилагательное). Напр.: 150-летие, 20-километровый переход, 25-процентный раствор.

Неверно: 150-тилетие, 20-тикилометровый переход и т. п., т. е. с присоединением ко второй части слова окончания числительного.

6.3.3. Издания деловой и научной литератур

Рекомендуется словесно-цифровая форма, даже когда числа малы. Напр.: 1-, 2- и 3-секционные шкафы; 3- и 4-красочные машины.

В узкоспец. изданиях для высокоподготовленного читателя допустимо прилагательное, присоединяемое к числу, если оно образовано от названия единицы физ. величины, заменять обозначением этой единицы. Напр.: 5-км расстояние; 12-т нагрузка.

6.3.4. Сложные слова из числительного и прилагательного процентный

Предпочтительной в таких изданиях следует считать форму с наращением одно- или двухбуквенного окончания по правилам наращения падежного окончания в порядковых числительных, обозначенных арабскими цифрами (см. 6.2.2). Напр.: 15%-й раствор, 20%-го раствора, 25%-му раствору и т. д. Такая форма экономнее предыдущей и позволяет соблюсти единообразие в наращении падежных окончаний.

В узкоспец. изданиях для высокоподготовленного читателя допустима форма без наращения падежного окончания, если контекст не может вызвать двояких толкований. Напр.:В 5% растворе.

6.4. Знаки в тексте

6.4.1. Замена слов в тексте знаками

Как и сокращения, знаки, которые во многих случаях могут заменить слова, экономят место в издании и время читателя. Наиболее употребительны в тексте знаки номера (№), параграфа (§), процентов (%), градуса (°), минуты (‘), секунды («). Читатель без расшифровки знака, без мысленного перевода его в словесную форму, по одному только графическому образу знака может мгновенно сориентироваться в значении числа. Знаки и пришли на смену словам, когда понадобилось самым быстрым и экономным способом указать читателю, каков характер чисел в цифровой форме: обозначают ли они порядковые номера или род заголовка либо числовое значение определенной величины.

6.4.2. Знаки №, %, §, ° в тексте

Эти знаки в тексте ставят только при числах в цифровой форме: № 5, § 11, 45 %, 30°. При числах прописью их принято заменять словами: номер пять, в параграфе втором, сорок пять процентов, пять градусов.

Знак % заменяют словом и при числе в цифровой форме, если текст публицистический или популярный, рассчитанный на массового читателя: 45 процентов.

Выброска знака № перед числами. Так поступают, когда и без знака № ясно, что число обозначает порядковый номер (напр., перед номерами страниц, столбцов, таблиц, формул, примечаний, приложений, деталей схемы и т. п.). Напр.: на с. 8; стб. 805; в приложении 3; в табл. 5; на рис. 8; в равенстве (5); из формулы (6); Примечание 5; винт 5 на рис. 10.

Знаки №, §, %, ° — при двух и более числах. Исходя из принципа экономии средств эти знаки набирают только перед рядом чисел или после него, без постановки у каждого числа в числовом ряду. Напр.;

№ 5, 6, 7; 8, 9°; 50, 60 и 70 %;

От 50 до 70 %; § 5 и 6

№ 5, № 6, № 7; 8°, 9°, 60 % и 70 %;

От 50 % до 60 %, § 5 и § 6

Если при этом числа представляют собой десятичные дроби, то их, во избежание неверного или затрудненного прочтения, отделяют друг от друга не запятой, а точкой с запятой. Напр.:

Правила набора. Знаки №, % и § отбивают от цифр на полукегельную. Знаки градуса, минуты и секунды от цифр не отбивают. Знак °С отбивают, как и другие обозначения единиц физ. величин, на 2 п.

6.4.3. Знаки более (>), менее ( ↑ Cодержание ↑

6.4.4. Знаки математических действий и соотношений, положительности и отрицательности значения величин

) отбивают от смежных символов и чисел на 2 п., а знаки положительности или отрицательности значения величины набирают слитно с последующим числом.

6.4.5. Знаки ударения и произношения в словах текста

Эти знаки облегчают и упрощают чтение. Так, знак ударения или две точки над буквой е (ё) помогают читателю с первого раза правильно прочесть текст в случаях, когда возможно двойное прочтение. Напр.: по´длиннее и подлинне´е; бо´льшая часть и больша´я часть; Всё деревушки были неказистые и Все деревушки были неказистые; Я видел из окна, что´ происходило на улице и Я видел из окна, что на улице толпились люди (подробнее см. 5.5).

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как пишется одна десятая цифрами в столбик, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как пишется одна десятая цифрами в столбик", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как пишется одна десятая цифрами в столбик:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *