Главная » Правописание слов » Как написать инверсию в таблице истинности

Слово Как написать инверсию в таблице истинности - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Как написать инверсию в таблице истинности

2) Логическое сложение или дизъюнкция:

Таблица истинности для дизъюнкции

A B F
1 1 1
1 0 1
0 1 1
0 0 0

3) Логическое отрицание или инверсия:

Таблица истинности для инверсии

A ¬ А
1 0
0 1

4) Логическое следование или импликация:

«A → B» истинно, если из А может следовать B.

Обозначение: F = A → B.

Таблица истинности для импликации

A B F
1 1 1
1 0 0
0 1 1
0 0 1

5) Логическая равнозначность или эквивалентность:

Источник

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Построено таблиц, форм:

Как пользоваться калькулятором

Видеоинструкция к калькулятору

Используемые символы

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

Что умеет калькулятор

Что такое булева функция

Что такое таблица истинности?

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

a b a ∧ b a ∨ b ¬a ¬b a → b a = b a ⊕ b
0 0 0 0 1 1 1 1 0
0 1 0 1 1 0 1 0 1
1 0 0 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0

Как задать логическую функцию

Есть множество способов задать булеву функцию:

Рассмотрим некоторые из них:

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

Алгоритм построения СКНФ для булевой функции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca

1. Построим таблицу истинности для функции

a b c ¬a ¬a ∧b ¬b ¬b ∧c ¬a ∧b∨ ¬b ∧c c∧a ¬a ∧b∨ ¬b ∧c∨c∧a
0 0 0 1 0 1 0 0 0 0
0 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 0 1 0 1
0 1 1 1 1 0 0 1 0 1
1 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1 1

Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: < 0, 0, 1 > < 0, 1, 0 > < 0, 1, 1 > < 1, 0, 1 >

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: < 0, 0, 0 > < 1, 0, 0 >

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

a b c F 1
0 0 0 0 0
0 0 1 1 ⊕ 0 1
0 1 0 1 1
0 1 1 1 ⊕ 1 0
1 0 0 0 0
1 0 1 1 ⊕ 0 1
1 1 0 0 0
1 1 1 1 ⊕ 0 1

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

a b c F 1 2
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 1 ⊕ 0 1
0 1 1 1 0 ⊕ 1 1
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 0 ⊕ 0 0
1 1 1 1 1 ⊕ 1 0

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

a b c F 1 2 3
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 ⊕ 0 0
1 0 1 1 1 1 ⊕ 1 0
1 1 0 0 0 0 ⊕ 1 1
1 1 1 1 1 0 ⊕ 1 1

Окончательно получим такую таблицу:

a b c F 1 2 3
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 1
1 1 1 1 1 0 1

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Источник

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Построено таблиц, форм:

Как пользоваться калькулятором

Видеоинструкция к калькулятору

Используемые символы

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

Что умеет калькулятор

Что такое булева функция

Что такое таблица истинности?

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

a b a ∧ b a ∨ b ¬a ¬b a → b a = b a ⊕ b
0 0 0 0 1 1 1 1 0
0 1 0 1 1 0 1 0 1
1 0 0 1 0 1 0 0 1
1 1 1 1 0 0 1 1 0

Как задать логическую функцию

Есть множество способов задать булеву функцию:

Рассмотрим некоторые из них:

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

Алгоритм построения СКНФ для булевой функции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca

1. Построим таблицу истинности для функции

a b c ¬a ¬a ∧b ¬b ¬b ∧c ¬a ∧b∨ ¬b ∧c c∧a ¬a ∧b∨ ¬b ∧c∨c∧a
0 0 0 1 0 1 0 0 0 0
0 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 0 1 0 1
0 1 1 1 1 0 0 1 0 1
1 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 1 1

Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: < 0, 0, 1 > < 0, 1, 0 > < 0, 1, 1 > < 1, 0, 1 >

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: < 0, 0, 0 > < 1, 0, 0 >

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

a b c F 1
0 0 0 0 0
0 0 1 1 ⊕ 0 1
0 1 0 1 1
0 1 1 1 ⊕ 1 0
1 0 0 0 0
1 0 1 1 ⊕ 0 1
1 1 0 0 0
1 1 1 1 ⊕ 0 1

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

a b c F 1 2
0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 1 ⊕ 0 1
0 1 1 1 0 ⊕ 1 1
1 0 0 0 0 0
1 0 1 1 1 1
1 1 0 0 0 ⊕ 0 0
1 1 1 1 1 ⊕ 1 0

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

a b c F 1 2 3
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 ⊕ 0 0
1 0 1 1 1 1 ⊕ 1 0
1 1 0 0 0 0 ⊕ 1 1
1 1 1 1 1 0 ⊕ 1 1

Окончательно получим такую таблицу:

a b c F 1 2 3
0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 1 1 1 1 0
1 1 0 0 0 0 1
1 1 1 1 1 0 1

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать инверсию в таблице истинности, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать инверсию в таблице истинности", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать инверсию в таблице истинности:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *