Пример:
Вычисляет точную сумму значений с плавающей точкой в итерируемом объекте и сумму списка или диапазона данных.
Пример:
Пример:
Пример:
Функция log(x[,base]) находит логарифм числа x по основанию e (по умолчанию). base — параметр опциональный. Если нужно вычислить логарифм с определенным основанием, его нужно указать.
Пример:
Пример:
Вычисляет логарифм по основанию 10.
Пример:
Пример:
Эта функция используется для нахождения квадратного корня числа. Она принимает число в качестве аргумента и находит его квадратный корень.
Пример:
В Python есть следующие тригонометрические функции.
Функция | Значение |
---|---|
sin | принимает радиан и возвращает его синус |
cos | принимает радиан и возвращает его косинус |
tan | принимает радиан и возвращает его тангенс |
asin | принимает один параметр и возвращает арксинус (обратный синус) |
acos | принимает один параметр и возвращает арккосинус (обратный косинус) |
atan | принимает один параметр и возвращает арктангенс (обратный тангенс) |
sinh | принимает один параметр и возвращает гиперболический синус |
cosh | принимает один параметр и возвращает гиперболический косинус |
tanh | принимает один параметр и возвращает гиперболический тангенс |
asinh | принимает один параметр и возвращает обратный гиперболический синус |
acosh | принимает один параметр и возвращает обратный гиперболический косинус |
atanh | принимает один параметр и возвращает обратный гиперболический тангенс |
Пример:
Эти функции преобразуют угол. В математике углы можно записывать двумя способами: угол и радиан. Есть две функции в Python, которые конвертируют градусы в радиан и обратно.
Пример:
К огда я был студентом, мой преподаватель по методам программирования любил повторять: «В математике все идеи простые». Чаще всего, фраза звучала в момент объяснения новой сложной темы, а потому вызывала определённые внутренние противоречия.
С возведением в степень всё не так — это действительно простая операция.
Возведение в степень — частный случай умножения, поэтому данную операцию изначально не рассматривали, как самостоятельную. Но уже в работах Диофанта Александрийского степени отведено особое место. В частности «Отец Алгебры» применял понятия кубов и квадратов числа.
Эта операция была известна ещё в древнем Вавилоне, однако современный её вид устоялся лишь в XVII веке.
Как умножение позволяет сократить количество символов сложения:
6 + 6 + 6 + 6 + 6 + 6 = 6 * 6
Так и степень сокращает запись умножения:
До воцарения числового показателя, были и другие варианты его записи. Математики раннего Возрождения использовали буквы. Например, Q обозначала квадрат, а C — куб. Различные формы записи возведения в степень не обошли и языки программирования.
Для АЛГОЛа и некоторых диалектов Бейсика применяется значок ↑. В матлабе, R, Excel-е и Хаскеле используется «циркумфлекс» — ^ или «галочка». Этот символ популярен и вне программирования.
В Python возведение в степень записывается при помощи двойной «звёздочки» — » ** «
a = 2 ** 4 print(a) > 16
Вторая форма записи — встроенная функция pow():
# первый аргумент — основание, а второй — показатель b = pow(2, 4) print(b) > 16
# корень четвёртой степени из 16 root = pow(16, (1/4)) print(root) > 2.0
Либо с применением оператора » ** «:
# корень кубический из 27 cub_root = 27 ** (1/3) print(cub_root) > 3.0
Для извлечения квадратного корня справедливы оба вышеуказанных способа, но существует и третий, специализированный. Для его применения требуется импортировать модуль math :
import math # квадратный корень из 100 sqr_root = math.sqrt(100) print(sqr_root) > 10.0
Логарифмирование — вторая обратная операция.
Логарифмом числа «b» по основанию «a» зовётся такой показатель степени, в который следует возвести «a», чтобы получить «b».
Здесь x — логарифм. Пример из математики — найдем значение выражения:
Легче всего эта запись читается в формате вопроса: «В какую степень нужно возвести 2, чтобы получить 16?». Очевидно, в 4-ю. Следовательно,
В питоне операция нахождения логарифма так же заложена в функционал модуля math:
import math # отыщем логарифм 100 по основанию 10 # 100 — основание логарифма, а 10 — аргумент log = math.log(100, 10) print(log) > 2.0
В целочисленную степень можно возводить положительные и отрицательные int и float числа:
И функция pow() и оператор » ** » умеют возводить комплексные числа:
# complex a = complex(2, 1) print(pow(a, 2)) > (3+4j) print(a ** 2) > (3+4j)
Показатель степени может быть положительным, отрицательным и нулевым:
Результат не определён, когда 0 возводят в отрицательную степень:
Ошибка деления на ноль возникает из-за следующего свойства степени:
Возведение числа в рациональную степень напрямую связано с извлечением корня из этого числа отношением:
Если рациональный показатель отрицательный, а основание равно нулю, то Питон все ещё будет выдавать ошибку:
В случае, когда основание меньше нуля, числитель показателя нечётный, а знаменатель, напротив, чётный, результат получается комплексным. Но это свойство рациональных степеней учитывается только в функции pow() :
print(pow(-5, (5/4))) > (-5.286856317202822-5.286856317202821j) print(type(pow(-5, (5/4)))) >
В остальном возведение в рациональную степень работает, как и для целочисленной:
print(0 ** (3/2)) > 0.0 print(pow(1, (23/24))) > 1.0 print(10 ** (6/7)) > 7.196856730011519
В начале автор объявил, что возведение в степень — штука несложная. Так вот, для вещественных степеней это уже не совсем так. Идеи, заложенные в эту операцию, хоть и просты, но их много, и каждая из них достойна собственной статьи. Описать вкратце разложение в ряд Тейлора и численное интегрирование не получится. Это будет не справедливо, как по отношению к вам, так и к математике. Поэтому, выделим главное:
Python умеет возводить в вещественную степень даже вещественные числа (пусть и псевдо)
Сделать такое инструментами математики ой как непросто:
# возведём число Пи в степень e print(pow(math.pi, math.e)) > 22.45915771836104
Дискуссии по поводу значения 0 в степени 0 продолжаются уже больше двух веков. Обычно значение нуля в нулевой степени принято считать неопределённым, но символическое соглашение о том, что «0 в степени 0 равно 1» помогает в записи формул и алгоритмов. Ровно поэтому так сделано и в Python:
Кубический корень
Как в C++ получить кубический корень числа?
Кубический корень
Всем доброго времени суток. Прошу вашей помощи и заранее говорю спасибо. Нужно извлечь кубический.
Корень кубический
Корень кубический подскажите как пример полностью записать? function y=F(x).
А не проще поставить версию 3 +?
Или принципиально именно на версии 2? (Если да, то жди, у меня она стоит, щас поищу ответ)
Для версии 2.7 вот так:
Кубический корень
Как нвйти кубический корень в FPU
кубический корень
Подскажите пожалуйста как в С# получить кубический корень из числа? В промежуточных вычислениях я.
Вычислить кубический корень
https://www.cyberforum.ru/attachment.php?attachmentid=457700&stc=1&d=1416771380 Как написать.
Кубический корень в программе
Как написать в программе кубический корень из какого либо числа. Если квадратный sqrt, тогда.
Кубический корень в t-sql
Господа, подскажите, как взять корень степени выше 2-й? Вообще, нужно вычислить кубический.
Извлечь кубический корень
Здравствуйте. Помогите составить программу. Извлечь кубический корень из суммы положительных.
Теперь вы знаете какие однокоренные слова подходят к слову Как написать кубический корень в питоне, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать кубический корень в питоне", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.