Главная » Правописание слов » Как написать свойства графика

Слово Как написать свойства графика - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике ? функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

Пример №2. Найти нули функции у=f(x) по заданному графику.

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Источник

Как написать свойства графика

Функция

Область определения

Вершина параболы

Нули функции

Экстремумы

если a 0, то максимум в вершине

Область значений

Четность

ни четная, ни нечетная

Функция

Область определения

Область значений

Четность

Нули функции

Экстремумы

х = 0 — точка минимума

Монотонность

возрастает при х ϵ R

при х ≤ 0 убывает
при х > 0 возрастает

Функция

Область определения

Область значений

Четность

Нули функции

Экстремумы

Монотонность

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

возрастает при х ϵ D(f)

возрастает при х ϵ D(f)

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

убывает при х ϵ D ( f )

возрастает при х ϵ D ( f )

Функция

Область определения

Область значений

Нули функции

Экстремумы

Монотонность

убывает при х ϵ D ( f )

возрастает при х ϵ D ( f )

Функция

Область определения

Область значений

Нули функции

Четность

Периодичность

Экстремумы

Монотонность

Функция

Область определения

R кроме

R кроме

Источник

Построение графиков функций

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида область определения выглядит так

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции

Упростим формулу функции:

Задача 2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

x y
0 -1
1 2

x y
0 2
1 1

x y
0 0
1 2

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

Задача 5. Построить график функции

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Задача 6. Построить графики функций:

б)

г)

д)

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а)

Преобразование в одно действие типа f(x) + a.

Сдвигаем график вверх на 1:

б)

Сдвигаем график вправо на 1:

Сдвигаем график вправо на 1:

Сдвигаем график вверх на 2:

г)

Преобразование в одно действие типа

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

д)

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.



Сжимаем график в два раза вдоль оси абсцисс:


Сдвигаем график влево на 1/2 вдоль оси абсцисс:


Отражаем график симметрично относительно оси абсцисс:

Источник

Основные элементарные функции: их свойства и графики

Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.

Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.

Выделяют следующие виды основных элементарных функций:

Постоянная функция

Свойства постоянных функций:

Корень n-й степени

Данная элементарная функция определяется формулой y = x n ( n – натуральное число больше единицы).

Рассмотрим две вариации функции.

Похожий вид у графиков функции четной степени при иных значениях показателя.

Свойства функции корень n-ой степени, n – четное число

Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.

Свойства функции корень n-ой степени, n – нечетное число

Степенная функция

Вид графиков и свойства функции зависят от значения показателя степени.

Степенная функция при нечетном положительном показателе

Свойства степенной функции, когда показатель степени – нечетный положительный

Степенная функция при четном положительном показателе

Свойства степенной функции, когда показатель степени – четный положительный:

Степенная функция при нечетном отрицательном показателе

Свойства степенной функции, когда показатель степени – нечетный отрицательный:

Степенная функция при четном отрицательном показателе степени

Свойства степенной функции, когда показатель степени – четный отрицательный:

Степенная функция при рациональном или иррациональном показателе (значение больше нуля и меньше единицы)

Иные значения показателя степени a (при условии 0 a 1 ) дадут аналогичный вид графика.

Свойства степенной функции при 0 a 1 :

Степенная функция при нецелом рациональном или иррациональном показателе степени (больше единицы)

Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.

Свойства степенной функции при a > 1 :

Степенная функция при действительном показателе степени (больше минус единицы и меньше нуля)

Степенная функция при нецелом действительном показателе степени (меньше минус единицы)

Показательная функция

Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы ( 0 a 1 ) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).

Свойства показательной функции, когда основание меньше единицы:

Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).

Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.

Свойства показательной функции, когда основание больше единицы:

Логарифмическая функция

График логарифмической функции имеет различный вид, исходя из значения основания а.

Иные значения основания, не большие единицы, дадут аналогичный вид графика.

Свойства логарифмической функции, когда основание меньше единицы:

Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже – графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).

Иные значения основания больше единицы дадут аналогичный вид графика.

Свойства логарифмической функции, когда основание больше единицы:

Тригонометрические функции, их свойства и графики

Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.

В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f ( x + T ) = f ( x ) ( T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.

График данной функции называется синусоида.

Свойства функции синус:

График данной функции называется косинусоида.

Свойства функции косинус:

График данной функции называется тангенсоида.

Свойства функции тангенс:

График данной функции называется котангенсоида.

Свойства функции котангенс:

Обратные тригонометрические функции, их свойства и графики

Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.

Свойства функции арксинус:

Свойства функции арккосинус:

Свойства функции арктангенс:

Свойства функции арккотангенс:

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать свойства графика, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать свойства графика", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать свойства графика:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *