Что такое функция?
7 класс, 11 класс, ЕГЭ/ОГЭ
Понятие функции
Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.
1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.
Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.
Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.
2. Функция — это определенное действие над переменной.
Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.
В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:
В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.
3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.
Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида
область определения выглядит так:
И записать это можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.
В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.
Что такое прямая зависимость
Содержание статьи
Прямая зависимость
Как и многие другие виды зависимостей, прямая зависимость в математике может быть выражена формулой, отражающей характер взаимосвязи между ее компонентами. Так, формула, соответствующая прямой зависимости, обыкновенно имеет вид y = kx. В указанном соотношении y представляет собой функцию, то есть зависимую переменную, определяемую значениями других компонентов, входящих в состав формулы. x в данном случае выполняет роль аргумента, то есть независимой переменной, значение которой определяет значение зависимой переменной, то есть функции.
При этом обе этих переменных, как зависимая, так и независимая, имеют свойство изменять свое значение. При этом третий компонент формулы, коэффициент k, представляет собой определенное число, которое в данной формуле является постоянным и не изменяется. Таким образом, формула прямой зависимости может, например, иметь вид y = 5x. При этом стандартный вид формулы, отражающей прямую зависимость, предполагает, что в качестве коэффициента используются положительные числа, а ноль и отрицательные числа не могут выступать в качестве таких коэффициентов.
Примеры прямой зависимости
Таким образом, содержательно наличие прямой зависимости между двумя переменными означает, что увеличение независимой переменной обязательно вызовет увеличение зависимой переменной, причем размер этого увеличения будет определяться коэффициентом k. Так, в приведенном выше примере увеличение x на единицу приведет к увеличению y на 5, поскольку коэффициент k = 5.
Простейшие функциональные зависимости
Лекция 3. Общие понятия и определения. Классификация функций. Предел функции. Бесконечно малые и бесконечно большие функции. Основные теоремы о бесконечно малых функциях.
Функция
При решении различных задач обычно приходится иметь дело с постоянными и переменными величинами.
Определение
Постоянной величиной называется величина, сохраняющая одно и тоже значение или вообще или в данном процессе: в последнем случае она называется параметром.
Переменной величиной называется величина, которая может принимать различные числовые значения.
Понятие функции
При изучении различных явлений обычно имеем дело с совокупностью переменных величин, которые связаны между собой так, что значения одних величин (независимые переменные) полностью определяют значения других (зависимые переменные и функции).
Определение
Переменная величина y называется функцией (однозначной) от переменной величины x, если они связаны между собой так, что каждому рассматриваемому значению x соответствует единственное вполне определенное значение величины y (сформулировал Н.И.Лобачевский).
x – независимая переменная или аргумент;
y – зависимая переменная (функция);
f – характеристика функции.
Совокупность всех значений независимой переменной, для которых функция определена, называется областью определения или областью существования этой функции. Областью определения функции может быть: отрезок, полуинтервал, интервал, вся числовая ось.
Каждому значению радиуса соответствует значение площади круга. Площадь – функция от радиуса, определенная в бесконечном интервале
2. Функция (2). Функция определена при
Для наглядного представления поведения функции строят график функции.
Определение
Графиком функции y=f(x) называется множество точек M(x,y) плоскости OXY, координаты которых связаны данной функциональной зависимостью. Или график функции – это линия, уравнением которой служит равенство, определяющее функцию.
Например, график функции (2) – полуокружность радиуса 2 с центром в начале координат.
Простейшие функциональные зависимости
Рассмотрим несколько простейших функциональных зависимостей
Определение
Две переменные величины называются прямо пропорциональными, если при изменении одной из них в некотором отношении, другая изменяется в том же соотношении.
y=kx, где k – коэффициент пропорциональности.
Определение
Две переменные величины связаны линейной зависимостью, если , где — некоторые постоянные величины.
Определение
Две переменные величины называются обратно пропорциональными, если при изменении одной из них в некотором отношении, другая изменяется в обратном отношении.
Квадратичная зависимость в простейшем случае имеет вид , где k – некоторая постоянная величина. График функции – парабола.
При изучении периодических явлений важную роль играет синусоидальная зависимость
— функция называется гармоникой.
— частота;
— начальная фаза.
Функция периодическая с периодом . Значения функции в точках x и x+T, отличающихся на период, одинаковы.
Функцию можно привести к виду , где . Отсюда получаем, что графиком гармоники является деформированная синусоида с амплитудой A периодом T, сдвинутая по оси ОХ на величину
|
Способы задания функции
Обычно рассматривают три способа задания функции: аналитический, табличный, графический.
Если функция выражена при помощи формулы, то она задана аналитически.
Например
Если функция y=f(x) задана формулой, то ее характеристика f обозначает ту совокупность действий, которую нужно в определенном порядке произвести над значением аргумента x, чтобы получить соответствующее значение функции.
Пример . Выполняется три действия над значением аргумента.
Этот способ устанавливает соответствие между переменными с помощью таблицы. Зная аналитическое выражение функции, можно представить эту функцию для интересующих нас значений аргумента при помощи таблицы.
Можно ли от табличного задания функции перейти к аналитическому выражению?
Заметим, что таблица дает не все значения функции, причем промежуточные значения функции могут быть найдены лишь приближенно. Это, так называемое интерполирование функции. Поэтому, в общем случае найти точное аналитическое выражение функции по табличным данным нельзя. Однако всегда можно построить формулу, и при том не одну, которая для значений аргумента, имеющихся в таблице, будет давать соответствующие табличные значения функции. Такого рода формула называется интерполяционной.
Аналитический и табличный способы не дают наглядного представления о функции.
Этого недостатка лишен графический способ задания функции y=f(x), когда соответствие между аргументом x и функцией y устанавливается с помощью графика.
Понятие неявной функции
Функция называется явной, если она задана формулой, правая часть которой не содержит зависимой переменной.
Функция y от аргумента x называется неявной, если она задана уравнением
F(x,y)=0 (1) неразрешенным относительно зависимой переменной.
Пример.
Понятие обратной функции
Пусть задана функция y=f(x) (1). Задавая значения аргумента х, получаем значения функции y.
Можно, считая y аргументом, а х – функцией, задавать значения y и получать значения x. В таком случае уравнение (1) будет определять x, как неявную функцию от y. Эта последняя функция называется обратной по отношению к данной функции y.
Предполагая, что уравнение (1) разрешено относительно x, получаем явное выражение обратной функции
(2), где функция для всех допустимых значений y удовлетворяет условию
Пример
Обратная функция однозначной функции может быть многозначной, то есть данному значению y может соответствовать несколько значений обратной функции .
Например, тригонометрические функции и обратные тригонометрические функции. Или
— двузначная.
Функция. Зависимые и независимые переменные. Область определения и область значений функции.
теория по математике ? функции
Определение понятия функции. Переменные.
Зависимость переменной у от переменной х, при которой любому значению переменной х соответствует единственное значение переменной у, называют функцией.
Ключевое слово, которое нужно запомнить в определении функции – это зависимость.
Например, человек идет на деловую встречу, но чувствует, что он опаздывает. Он ускоряет свой шаг, потому что от его скорости зависит время. Чем быстрее он двигается, тем меньше времени уйдет у него на дорогу. То есть время зависит от скорости.
Или, например, спортсмен метает ядро на дальнее расстояние. Чем сильнее будет бросок, тем дальше полетит ядро. Скорость полета зависит от силы толчка. Здесь опять прослеживается зависимость.
Например, функция задана формулой у = – 3х 2 – 7. Равносильная ей запись такая: f(x)= – 3х 2 – 7.
Области определения и значения функции
Все возможные значения независимой переменной (х) называют областью определения функции.
Все значения, которые принимает зависимая переменная (у) называют областью значений функции.
Если какая-либо функция у=f(x) задана формулой, а при этом ее область определения не указана, то считается, что она состоит из любых значений переменной, при которых выражение имеет смысл.
Области определения и значений школьных функций
1. Для линейной функции областью определения будет являться любое число.
Если у такой функции k≠0, то областью ее значений также будет являться любое число.
При k=0 область значений этой функции состоит из единственного числа b.
Например, функция задана формулой у = 7. Тогда ее область значения — это число 7, а область определения – любое число.
2. Гипербола задается формулой вида y = k/x.
Область определения такой функции – любое число, кроме нуля.
Область значений такой функции – аналогичная.
3. Функция, заданная формулой y= |x|, имеет область определения – любое число.
4. У функций у = х 2 и у = х 3 область определения – любое число.
Для того чтобы понимать, как находится область определения функции и рассмотреть примеры заданий на нахождение области определения функции, вспомним правила, при которых существуют ограничения и выражение не имеет смысл: нельзя делить на нуль; нельзя извлекать квадратный корень из отрицательного числа.
Пример 3. Рассмотрим, как находится область определения функций, которые заданы следующими формулами:
В знаменателе этого выражения содержится переменная х, поэтому надо проверить, при каком значении он может быть равным нулю и исключить это значение из области определения, так как на знаменатель делят, а на нуль делить нельзя.
Итак, имеем знаменатель х + 11. Приравниваем его к нулю, получаем х + 11 = 0. Решаем простое уравнение на нахождение неизвестного слагаемого и получаем х= – 11. Это число исключаем из области определения функции.
Ответ: (1) и (2) – множество всех чисел; (3) – любое число, кроме (-11) или х ≠ – 11; (4) х ≥0.
Пределы в математике для чайников: объяснение, теория, примеры решений
Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.
В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Понятие предела в математике
Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.
Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.
Звучит громоздко, но записывается очень просто:
Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.
Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:
Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.
В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:
Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.
Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!
Неопределенности в пределах
Неопределенность вида бесконечность/бесконечность
Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?
Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:
Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Еще один вид неопределенностей: 0/0
В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:
Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:
Сократим и получим:
Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.
Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:
Правило Лопиталя в пределах
Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?
Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.
Наглядно правило Лопиталя выглядит так:
Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.
А теперь – реальный пример:
Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:
Вуаля, неопределенность устранена быстро и элегантно.
Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос «как решать пределы в высшей математике». Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.