Урок на тему «Логические операции. Конъюнкция»
В предыдущем уроке мы рассмотрели логическую операцию отрицание. Сегодня поговорим о конъюнкции. Конъюнкцию также называют «логическое умножение» или «логическое И«, а часто просто «И«.
В естественном языке конъюнкцию заменяют союзом И.
Конъюнкция — бинарная операция, т. е. для нее необходимо два операнда.
Для обозначения конъюнкции применяют различные символы. Это может быть знак &, AND. Но чаще всего для обозначения конъюнкции используют символ
Рассмотрим пример. Пусть есть два высказывания: A = «Москва — столица России» и B = «Сегодня солнечно«. Тогда конъюнкция этих высказываний будет выглядеть так «Москва — столица России И сегодня солнечно«, а обозначаться так:
Так как на клавиатуре нет символа конъюнкции, его можно набрать из слэша ( / ) и бэкслэша ( \ ) — получится /\ — похоже на обозначение конъюнкции.
Таблица истинности для конъюнкции выглядит так:
A | B | A /\ B |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Запомнить довольно просто — конъюнкция истинна только в одном случае — когда оба исходных высказывания истинны. А еще проще запомнить таблицу истинности для конъюнкции, если представить ее электрический аналог — два последовательно включенных выключателя:
Электрический аналог конъюнкции
И теперь сразу понятно, что лампочка будет гореть только тогда, когда оба выключателя включены — цепь замкнута. Все также как и у конъюнкции.
Автор: Александр Чернышов
Оцените статью, это очень поможет развитию сайта.
Как пишется конъюнкция знак
2) Логическое сложение или дизъюнкция:
Таблица истинности для дизъюнкции
A | B | F |
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
3) Логическое отрицание или инверсия:
Таблица истинности для инверсии
A | ¬ А |
1 | 0 |
0 | 1 |
4) Логическое следование или импликация:
«A → B» истинно, если из А может следовать B.
Обозначение: F = A → B.
Таблица истинности для импликации
A | B | F |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
5) Логическая равнозначность или эквивалентность:
Конъюнкция
Логическая операция конъюнкция — бинарная операция над высказываниями, результатом которой является истинное высказывание только в случае, когда исходные высказывания истинны.
Другие названия конъюнкции — логическое умножение, логическое И или просто И.
Конъюнкция изучается в информатике при рассмотрении раздела алгебра логики.
В естественных языках конъюнкцию заменяют союзом «и».
В языках программирования для конъюнкции используют обозначение ‘ and ‘ или знак амперсанд ‘ & ‘ (либо ‘ && ‘) (например, x>0 and x или a>=10 & a ).
Как набрать знак конъюнкции на клавиатуре
Таблица истинности для конъюнкции
Истинность конъюнкции определяется ее таблицей истинности.
A | B | A /\ B |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Конъюнкция и круги Эйлера
Результатом конъюнкции является область пересечения высказываний.
Электрический аналог конъюнкции
Представим, что выключатели A и B — это высказывания, причем 0 — выключатель разомкнут, 1 — выключатель замкнут. Лампа символизирует конъюнкцию. Когда она не горит — 0, горящая лампа — 1. Тогда становится очевидным, что лампа будет гореть только когда оба выключателя будут замкнуты, что полностью соотносится с таблицей истинности для конъюнкции.
Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация
Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.
Основные положения
Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.
Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).
Примером таким высказываний будут являться:
Логические высказывания делятся на два типа — простые и сложные.
В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.
Булево выражение – это символическое (знаковое) описание высказывания.
Операции
Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.
Конъюнкция
Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).
Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков \( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:
Дизъюнкция
Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.
Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.
Инверсия
Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.
Импликация
Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит гром, то стоит пасмурная погода.
Эквивалентность
Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.
Обозначается с помощью трех черточек или ⟺.
Порядок выполнения операций
Логические операции выполняются в следующем порядке:
Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.
Пример
Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:
Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:
Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию \( z \in A \)=1.
Таблица истинности для всех отрезков:
Ответ: A = [3,11].
Видео
Заключение
Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.
Конъюнкция и дизъюнкция — правила и примеры решения в математике
В информатике существует специальная дисциплина, рассматривающая логические операции отрицания, конъюнкции и дизъюнкции. В математике это направление называется булевой алгеброй и применяется для построения алгоритмов, проверяющих различные условия и соответствия. Специалисты в области информационных технологий рекомендуют перед практическим решением примеров получить теоретические знания.
Общие сведения
Булева алгебра — раздел математического анализа, изучающий истинность логических утверждений. Ее открыл Д. Буль в ХIХ веке. Алгебра логики получила практическое применение только в ХХ веке при проектировании различных элементов персонального компьютера. Дисциплина доказывает истинность или ложность тождеств логического типа математическим путем с применением специальных таблиц.
Следует отметить, что логическое тождество является определенной функцией, принимающей значения 0 или 1 в зависимости от ее элементов. В алгебре логики значения имеют следующие названия: 0 — ЛОЖЬ (FALSE) и 1 — ИСТИНА (TRUE).
Операторы сравнения
Следует отметить, что в этих примерах получается истинное значение, поскольку условие выполняется. Однако в информатике при построении алгоритмов используются методы ветвления. Они представляют собой такую конструкцию: ЕСЛИ (a>b), ТО a+b. ИНАЧЕ (a*b). Читается запись следующим образом: в том случае, когда значение а больше b, нужно сложить оба числа, а иначе (a Логические операции
Операции логического типа очень часто применяются при построении выражений, используемых в программировании. К ним относятся следующие:
Однако булева алгебра не ограничивается только ими, поскольку существуют и другие их производные. Для каждой из трех составляются определенные таблицы истинности, которые каждый раз необходимо строить для получения результата вычисления логических выражений. Специалисты рекомендуют отдельно на листе картона перечертить таблицы всех логических операций.
Функция конъюнкции
Конъюнкция — операция логического умножения, которая будет истинным при достоверности каждого выражения. Ее обозначение — символ конъюнктора «&». Записывается следующим образом: S&T, где S и T — логические тождества или конкретные значения. Операция имеет такие особенности: только при равенстве всех элементов 1 значение выражения является истинным, а в других случаях — ложью. Для проверки необходимо составить таблицу значений логического тождества:
S | T | S&T |
0 | 0 | F |
0 | 1 | F |
1 | 0 | F |
1 | 1 | T |
Таблица 1. Значение функции в зависимости от логических переменных.
Из таблицы 1 видно, что выражение S&T принимает только TRUE при всех истинных значениях переменных. Если рассматривать алгебру, то можно провести аналогию между логическим и обыкновенным умножениями. Например, произведение двух чисел S*T, которые для удобства сравнения принимают значения 0 или 1.
Если сравнивать два результата, то они будут идентичны. Следовательно, для правильного построения таблицы для конъюнкции нужно руководствоваться аналогичной операцией умножения.
Информация о дизъюнкции
В булевой алгебре операция логического сложения называется дизъюнкцией. Обозначается она символом, который называется дизъюнктором (V или I). Логическое тождество, содержащее два элемента, имеет такой вид: SVT. Операция имеет только ложное значение при равенстве S и T нулю. Для нее нужно также строить специальную таблицу:
Таблица 2. Истинность операции дизъюнкции SVT.
Операция аналогична сложению в алгебре, хотя имеются некоторые отличия. Чтобы убедиться в этом, требуется выполнить определенное действие — построить специальную таблицу результатов для алгебраического сложения нулей и единиц.
Если рассмотреть результаты в последнем случае, то можно сделать вывод о схожести сложения и дизъюнкции. Однако в последней строке алгебраической суммы есть некоторое несоответствие — 2. Это показывает, какое переполнение разряда происходит в булевой алгебре. В последней происходит переход с одного разряда в другой.
Булево отрицание
В алгебре логики применяется также операция отрицания, которую также называют инверсией. Суть ее заключается в том, что при истинном значении выражения под знаком инверсии получается ложный результат, а при ложном — истина. Обозначается она символом инверсии «¬», а записывается в таком виде ¬(S). Для демонстрации операции необходимо ознакомиться с таблицей:
Исходное выражение, S | Результат, ¬(S) |
0 | T |
1 | F |
Таблица 3. Истинность ¬(S).
Например, если необходимо указывать несколько тождеств логического вида, то при помощи отрицания можно использовать только одно. Для примера необходимо написать, что число не равно 0: (t 0). При использовании логического отрицания условие выглядит короче: t=!0.
Приоритеты вычислений
При решении выражений булевского типа, как и в алгебре, существуют определенные приоритеты. Каждая операция обладает определенным из них. Наибольшей степенью пользуется конъюнкция, средней — дизъюнкция. Наименьшим приоритетом обладает логическое отрицание. Однако эту особенность можно поменять при помощи группировки элементов в выражениях, которая производится скобками. С учетом этих особенностей алгоритм решения тождества имеет следующий вид:
Иногда бывают задачи, в которых следует упрощать выражение. Для этой цели следует знать некоторые особенности:
Этих правил достаточно для упрощения булевского выражения. Следует отметить, что перед построением булевской таблицы требуется с самого начала упростить исходное тождество.
Примеры решений
В первом простом примере требуется составить таблицу булевского типа для выражения S&(S|T)|T&S|¬(T&S).
Решать задание нужно по такому алгоритму:
Следующий пример будет сложнее, поскольку выражение ¬ < ¬[ ¬((S|0)&¬(T|S)& ¬(S&(T&S)) ]& ¬(S&S) >следует упростить, а затем составить таблицу. Задача решается по такой методике:
Следует отметить, что исходное логическое выражение необходимо на начальном этапе решения упростить, а затем строить таблицу. В этом возможно убедиться на основании приведенного примера, в котором сокращается одна переменная.
Таким образом, для решения выражения, содержащего логические операции конъюнкции, дизъюнкции и инверсии, необходимо его упростить, а затем разбить на простые элементы.