Главная » Правописание слов » Как пишется коэффициент пропорциональности

Слово Как пишется коэффициент пропорциональности - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Что такое коэффициент пропорциональности? (с решенными упражнениями)

Если, с другой стороны, лестница увеличивается до 2,3 метра, тогда длина тени будет 2,3 * 1/2 = 1,15 метра..

Например, если мы скажем, что два объекта пропорциональны по длине, мы получим, что если один объект увеличивает или уменьшает свою длину, то другой объект также пропорционально увеличивает или уменьшает свою длину..

Коэффициент пропорциональности

Коэффициент пропорциональности, как показано в примере выше, является константой, на которую необходимо умножить величину, чтобы получить другую величину.

Пропорциональность упражнений

Первое упражнение

Хуан хочет приготовить торт для 6 человек. Рецепт, который Хуан говорит, что торт несет 250 г муки, 100 г сливочного масла, 80 г сахара, 4 яйца и 200 мл молока..

Прежде чем приступить к приготовлению торта, Хуан понял, что у него есть рецепт торта для 4 человек. Какими должны быть величины, которые Джон должен использовать?

решение

Здесь пропорциональность следующая:

Коэффициент пропорциональности в этом случае равен 6/4 = 3/2, что можно понять, как если бы оно сначала делилось на 4 для получения ингредиентов на человека, а затем умножалось на 6, чтобы сделать торт для 6 человек..

Когда вы умножаете все количества на 3/2, получается, что для 6 человек ингредиенты:

Второе упражнение

Два автомобиля идентичны, за исключением шин. Радиус шины транспортного средства равен 60 см, а радиус шины второго транспортного средства равен 90 см..

Если после выполнения тура у вас количество кругов, которые дали шины с наименьшим радиусом, составляло 300 кругов. Сколько кругов сделали шины с наибольшим радиусом?

решение

В этом упражнении константа пропорциональности равна 60/90 = 2/3. Таким образом, если меньшие радиопокрышки дали 300 кругов, то шины с большим радиусом дали 2/3 * 300 = 200 кругов..

Третье упражнение

Известно, что 3 рабочих за 5 часов покрасили стену площадью 15 квадратных метров. Сколько могут рисовать 7 рабочих за 8 часов??

решение

Данные, представленные в этом упражнении:

и то, что спрашивают, это:

Во-первых, вы можете спросить: сколько бы 3 рабочих нарисовали за 8 часов? Чтобы знать это, строка данных, представленная коэффициентом пропорциональности 8/5, умножается. Это дает в результате:

Теперь мы хотим знать, что произойдет, если число рабочих увеличится до 7. Чтобы узнать, какой эффект это дает, умножьте количество окрашенных стен на коэффициент 7/3. Это дает окончательное решение:

Источник

Прямая и обратная пропорциональность

Пропорциональность — это зависимость одной величины от другой, при которой изменение одной величины приводит к изменению другой во столько же раз.

Пропорциональность величин может быть прямой и обратной.

Прямая пропорциональность

Прямая пропорциональность — это зависимость двух величин, при которой одна величина зависит от второй величины так, что их отношение остаётся неизменным. Такие величины называются прямо пропорциональными или просто пропорциональными.

Рассмотрим пример прямой пропорциональности на формуле пути:

где s — это путь, v — скорость, а t — время.

При равномерном движении путь пропорционален времени движения. Если взять скорость v равной 5 км/ч, то пройденный путь s будет зависеть только от времени движения t:

Скорость v = 5 км/ч
Время t (ч) 1 2 4 8 16
Путь s (км) 5 10 20 40 80

Из примера видно, что во сколько раз увеличивается время движения t, во столько же раз увеличивается пройденное расстояние s. В примере мы увеличивали время каждый раз в 2 раза, так как скорость не менялась, то и расстояние увеличивалось тоже в два раза.

В данном случае скорость (v = 5 км/ч) является коэффициентом прямой пропорциональности, то есть отношением пути ко времени, которое остаётся неизменным:

5 = 10 = 20 = 40 = 80 = 5.
1 2 4 8 16

Если время движения остаётся неизменным, то при равномерном движении расстояние будет пропорционально скорости:

Время t = 2 ч
Скорость v (км/ч) 5 15 45 90
Расстояние s (км) 10 30 90 180

В этом примере коэффициентом прямой пропорциональности, то есть, отношением пути к скорости, которое остаётся неизменным, является время (t = 2 ч):

10 = 30 = 90 = 180 = 2.
5 15 45 90

Из данных примеров следует, что две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз другая увеличивается (или уменьшается) во столько же раз.

Формула прямой пропорциональности

Формула прямой пропорциональности:

где y и x — это переменные величины, а k — это постоянная величина, называемая коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных y и x равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Обратная пропорциональность

Обратная пропорциональность — это зависимость двух величин, при которой увеличение одной величины приводит к пропорциональному уменьшению другой. Такие величины называются обратно пропорциональными.

Рассмотрим пример обратной пропорциональности на формуле пути:

где s — это путь, v — скорость, а t — время.

При прохождении одного и того же пути с разной скоростью движения время будет обратно пропорционально скорости. Если взять путь s равным 120 км, то потраченное на преодоление этого пути время t будет зависеть только от скорости движения v:

Путь s = 120 км
Скорость v (км/ч) 10 20 40 80
Время t (ч) 12 6 3 1,5

Из примера видно, что во сколько раз увеличивается скорость движения v, во столько же раз уменьшается время t. В примере мы увеличивали скорость движения каждый раз в 2 раза, а так как расстояние, которое нужно преодолеть, не менялось, то количество времени на преодоление данного расстояния сокращалось тоже в два раза.

В данном случае путь (s = 120 км) является коэффициентом обратной пропорциональности, то есть произведением скорости на время:

10 · 12 = 20 · 6 = 40 · 3 = 80 · 1,5 = 120.

Из данного примера следует, что две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Формула обратной пропорциональности

Формула обратной пропорциональности:

где y и x — это переменные величины, а k — это постоянная величина, называемая коэффициентом обратной пропорциональности.

Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента обратной пропорциональности:

Источник

Прямая и обратная пропорциональность

Основные определения

Математическая зависимость — это соответствие между элементами двух множеств, при котором каждому элементу одного множества ставится в соответствие элемент из другого множества.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин. Пропорциональными называются две взаимно-зависимые величины, если отношение их значений остается неизменным.

Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз. Проще говоря — это зависимость одного числа от другого.

Есть две разновидности пропорциональностей:

Коэффициент пропорциональности — это неизменное отношение пропорциональных величин. Он показывает, сколько единиц одной величины приходится на единицу другой. Коэффициент пропорциональности обозначается латинской буквой k.

Прямо пропорциональные величины

Две величины называются прямо пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая увеличивается (или уменьшается) во столько же раз.

Прямая пропорциональность в виде схемы: «больше — больше» или «меньше — меньше».

a и d называются крайними членами, b и c — средними.

Свойство прямо пропорциональной зависимости:

Если две величины прямо пропорциональны, то отношения соответствующих значений этих величин равны.

Примеры прямо пропорциональной зависимости:

Если говорить метафорами, то прямую пропорциональную зависимость можно отличить от обратной по пословице: «Чем дальше в лес, тем больше дров». Что значит, чем дольше ты идешь по лесу, тем больше дров можно собрать.

Формула прямой пропорциональности

y = kx,

где y и x — переменные величины, k — постоянная величина, которую называют коэффициентом прямой пропорциональности.

Коэффициент прямой пропорциональности — это отношение любых соответствующих значений пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента прямой пропорциональности:

Пример 1.

В одно и то же путешествие поехали два автомобиля. Один двигался со скоростью 70 км/ч и за 2 часа проделал тот же путь, что другой за 7 часов. Найти скорость второго автомобиля.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Пример 2.

Блогер за 8 дней может написать 14 постов. Сколько помощников ему понадобится, чтобы написать 420 постов за 12 дней?

Количество человек (блогер и помощники) увеличивается с увеличением объема работы, если ее нужно сделать за то же количество времени.

Если разделить 420 на 14, узнаем, что объем увеличивается в 30 раз.

Но так как по условию задачи на работу дается больше времени, то количество помощников увеличивается не в 30 раз. Таким образом:

Ответ: 20 человек напишут 420 постов за 12 дней.

Обратно пропорциональные величины

Две величины называют обратно пропорциональными, если при увеличении (или уменьшении) одной из них в несколько раз — другая уменьшается (или увеличивается) во столько же раз.

Объясним, что значит обратно пропорционально в виде схемы: «больше — меньше» или «меньше — больше».

Свойство обратной пропорциональности величин:

Если две величины находятся в обратно пропорциональной зависимости, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

Примеры обратно пропорциональной зависимости:

Формула обратной пропорциональности

где y и x — это переменные величины,

k — постоянная величина, которую называют коэффициентом обратной пропорциональности.

Коэффициент обратной пропорциональности — это произведение любых соответствующих значений обратно пропорциональных переменных y и x, равное одному и тому же числу.

Формула коэффициента обратной пропорциональности:

Потренируемся

Пример 1. 24 человека за 5 дней раскрутили канальчик в ютубе. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?

Пример 2. Автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?

Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.

Соотношения равны, но перевернуты относительно друг друга.

Источник

Пропорциональность

Содержание

Пример

Масса керосина пропорциональна его объёму: 2 л керосина имеют массу 1,6 кг, 5 л имеют массу 4 кг, 7 л имеют массу 5,6 кг. Отношение массы к объёму всегда будет равно плотности:

1,6 / 2 = 0,8; 4 / 5 = 0,8; 5,6 / 7 = 0,8 и т. д.

Коэффициент пропорциональности

Символ

Математический символ ‘∝’ используется для указания пропорциональности двух величин. Пример, A ∝ B.

В юникоде для отображения используется символ U+221D.

Прямая пропорциональность

Прямая пропорциональность — функциональная зависимость, при которой некоторая величина зависит от другой величины таким образом, что их отношение остаётся постоянным. Иначе говоря, эти переменные изменяются пропорционально, в равных долях, то есть, если аргумент изменился в два раза в каком-либо направлении, то и функция изменяется тоже в два раза в том же направлении.

Математически прямая пропорциональность записывается в виде формулы:

Графиком прямой пропорциональности является прямая линия, проходящая через начало координат.

Обратная пропорциональность

Обра́тная пропорциона́льность — это функциональная зависимость, при которой увеличение независимой величины(аргумента) вызывает пропорциональное уменьшение зависимой величины(функции).

См. также

Источники

Полезное

Смотреть что такое «Пропорциональность» в других словарях:

ПРОПОРЦИОНАЛЬНОСТЬ — ПРОПОРЦИОНАЛЬНОСТЬ, пропорциональности, мн. нет, жен. (книжн.). 1. отвлеч. сущ. к пропорциональный. Пропорциональность частей. Пропорциональность телосложения. 2. Такая зависимость между величинами, когда они пропорционально (см. пропорциональный … Толковый словарь Ушакова

ПРОПОРЦИОНАЛЬНОСТЬ — (от лат. proportionalis соразмерный, пропорциональный). Соразмерность. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ПРОПОРЦИОНАЛЬНОСТЬ отлат. proportionalis, пропорциональный. Соразмерность. Объяснение 25000… … Словарь иностранных слов русского языка

Пропорциональность — 1) соразмерность элементов и их связей в одной системе; 2) принцип организации политических систем и процессов, динамическая сбалансированность политической системы. В политологическом ракурсе «пропорциональность» подразумевает выяснение целого… … Политология. Словарь.

пропорциональность — соразмерность, соизмеримость; соответствие, стройность, гармоничность, рациональность, нормальность. Ant. непропорциональность, асимметрия Словарь русских синонимов. пропорциональность соразмерность Словарь синонимов русского языка. Практический… … Словарь синонимов

ПРОПОРЦИОНАЛЬНОСТЬ — (от латинского proportio соотношение), простейший вид функциональной зависимости. Различают прямую пропорциональность y=kx (например, путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т.е. S=vt) и обратную… … Современная энциклопедия

ПРОПОРЦИОНАЛЬНОСТЬ — простейший вид функциональной зависимости (см. Функция). Различают прямую пропорциональность. (y =kx) и обратную пропорциональность (y=k/x). Напр., путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т. е. S =vt… … Большой Энциклопедический словарь

Пропорциональность — (от латинского proportio соотношение), простейший вид функциональной зависимости. Различают прямую пропорциональность y=kx (например, путь S, пройденный при равномерном движении со скоростью v, пропорционален времени t, т.е. S=vt) и обратную… … Иллюстрированный энциклопедический словарь

пропорциональность — ПРОПОРЦИОНАЛЬНОСТЬ, соразмерность ПРОПОРЦИОНАЛЬНЫЙ, соразмерный ПРОПОРЦИОНАЛЬНО, соразмерно, соответственно … Словарь-тезаурус синонимов русской речи

ПРОПОРЦИОНАЛЬНОСТЬ — ПРОПОРЦИОНАЛЬНОСТЬ, и, жен. 1. см. пропорциональный. 2. В математике: такая зависимость между величинами, при к рой увеличение одной из них влечёт за собой изменение другой во столько же раз. Прямая п. (при к рой с увеличением одной величины… … Толковый словарь Ожегова

ПРОПОРЦИОНАЛЬНОСТЬ — англ. proportionality; нем. Proportionalitat. Простейший вид функциональной зависимости, фиксирующей соотношение между двумя величинами; показатель отношения исследуемой функции ко всему числу изучаемых случайностей. Antinazi. Энциклопедия… … Энциклопедия социологии

ПРОПОРЦИОНАЛЬНОСТЬ — (лат. proportionalis) соблюдение пропорций, рациональных структурных соотношений в экономике, согласованное развитие отраслей, сфер, регионов. Райзберг Б.А., Лозовский Л.Ш., Стародубцева Е.Б.. Современный экономический словарь. 2 е изд., испр. М … Экономический словарь

Источник

Коэффициент прямой пропорциональности

Что такое коэффициент прямой пропорциональности? Коэффициент прямой пропорциональности это как?

С прямой пропорциональностью неразрывно связано понятие коэффициент прямой пропорциональности.

Прямая пропорциональность есть функция вида y = kx, см. Прямая пропорциональность определение.

В этой формуле k есть коэффициент прямой пропорциональности.

Рассмотрим примеры коэффициента прямой пропорциональности.

Коэффициент прямой пропорциональности примеры

Пример коэффициента прямой пропорциональности

Здесь коэффициент пропорциональности равен 5. О чем это говорит?

Если мы будем делить значения переменной y на значения переменной x, то всегда будем получать 5, а это и есть наш коэффициент прямой пропорциональности.

Возьмем для примера из области определения три любые значения икс, пусть это будут 2, 30 и 61.

Найдем соответствующие значения y и заполним таблицу для y = 5x

Далее, если мы будем делить значения переменной y на значения переменной x, то всегда будем получать коэффициент пропорциональности 5

То, что все эти частные равны одному и тому же числу 5, и говорит о том, что наша функция y = 5x есть прямая пропорциональность.

Может коэффициент пропорциональности быть целым?

Здесь коэффициент пропорциональности равен 10.

Может коэффициент пропорциональности быть отрицательным?

Здесь коэффициент пропорциональности равен минус 10.

Может коэффициент пропорциональности быть дробным?

Здесь коэффициент пропорциональности равен минус десять целых пять десятых.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как пишется коэффициент пропорциональности, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как пишется коэффициент пропорциональности", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как пишется коэффициент пропорциональности:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *