МАТРИЦА
Смотреть что такое «МАТРИЦА» в других словарях:
матрица — Логическая сеть, сконфигурированная в виде прямоугольного массива пересечений входных/выходных каналов. [http://www.vidimost.com/glossary.html] матрица Система элементов (чисел, функций и других величин), расположенных в виде прямоугольной… … Справочник технического переводчика
Матрица — [matrix] система элементов (чисел, функций и других величин), расположенных в виде прямоугольной таблицы, над которой можно производить определенные действия. Таблица имеет следующий вид: Элемент матрицы в общем виде обозначается aij это… … Экономико-математический словарь
МАТРИЦА — (нем., Matrize, от лат. matrix матка). 1) в литейном производстве: медная форма для отливки букв, а также монет. 2) в типографском деле: бумажная форма для отливки стереотипа. Словарь иностранных слов, вошедших в состав русского языка. Чудинов… … Словарь иностранных слов русского языка
матрица — ы, ж., МАТРИС matrice f., нем. Matrize <лат. matris. 1. Форма, в которой отливают буквы, знаки при книгопечатании. Сл. 18. А велено на печатном дворе против тех образцов вырезать пунсоны стальные и ими пробить матрицы на меди, и, отлив те… … Исторический словарь галлицизмов русского языка
МАТРИЦА — в математике прямоугольная таблица каких либо элементов aik (чисел, математических выражений), состоящая из m строк и n столбцов:Если m=n, то матрица называется квадратной. Над матрицей можно производить действия по правилам матричной алгебры.… … Большой Энциклопедический словарь
Матрица — двумерный массив однотипных элементов. Положение элемента в матрицы определяется номером строки и номером столбца. По английски: Matrix См. также: Типы данных Финансовый словарь Финам … Финансовый словарь
матрица — сетка, (многомерная) таблица; волока, форма, матка, источник, фильера, фотоматрица, начало Словарь русских синонимов. матрица сущ., кол во синонимов: 11 • волока (2) • … Словарь синонимов
МАТРИЦА — см. ДАННЫХ МАТРИЦА Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии
МАТРИЦА — (matrix) Множество элементов, сгруппированных в ряды и столбцы. Элементы могут быть цифрами, алгебраическими выражениями или их сочетаниями. Матрица m х n имеет m рядов (слева направо) и n столбцов (сверху вниз). В матрице А аij, представляет… … Экономический словарь
МАТРИЦА — (1) в машиностроении часть (см.) с вырезанным в нём углублением млн. отверстием, соответствующим форме обрабатываемой давлением детали, в которое входит (см.); (2) в полиграфии углублённая (в противоположность выпуклой (см.)), предназначенная… … Большая политехническая энциклопедия
Матрица — пространственная совокупность числовых значений, расположенных в узлах условной решетки. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов
Значение слова «матрица»
1. Тех. Углубленная металлическая форма, применяемая при обработке металла давлением, при отливке типографских литер и пр. Линотипная матрица.
2. Типогр. Обратная (углубленная) копия, снимаемая с набора на картоне, свинце, пластмассе и т. п. для отливки стереотипов, с которых производится печатание.
3. Мат. Система каких-л. математических величин, расположенных в виде прямоугольной схемы.
[От лат. matrix, matricis — матка]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
Матрица (искусство и техника) — образец, модель, штамп, шаблон, инструмент в серийном производстве объектов искусства и техники.
Матрица (диск) — название специального диска, служащий образцом для создания дисков (компакт-диск, DVD и др.) с записью (музыки, фильмов и т. д.) при их серийном или массовом производстве.
Матрица (издательское дело) — вогнутая часть формы, в которой пластическое тело формуется давлением, служащее типографским шрифтом.
Матрица в красильном деле — деревянная пластинка с вырезанным на ней рельефом какого-нибудь узора, служащая для отливки металлических набивных форм.
Матрица композита — связующее композиционного материала: распределяет нагрузку по армирующим элементам и защищает их.
Матрица как прямоугольная таблица:
Матрица (математика) — прямоугольная таблица элементов некоторого кольца или поля.
Матрица (программирование) — двумерный массив.
Матрица (электроника) — обобщенный термин для различных объектов в электронике, в которых элементы объекта упорядочены в виде двумерного массива, аналогично математической матрице.
Мáтричный индикáтор — разновидность знакосинтезирующего индикатора, в котором элементы индикации сгруппированы по строкам и столбцам.
Матрица (фото) — полупроводниковая СБИС с прямоугольной матрицей светочувствительных элементов (фотодиодов) для преобразования поступающего на неё света (отраженного от объекта) в электронный сигнал (изображение) или массив цифровых данных.
Матрица (экономика) — таблицы, предназначенные для диагностики состояния.
МА’ТРИЦА, ы, ж. [нем. Matrize] (тех.). 1. Пластинка с выдавленными, вырезанными обратными знаками или изображениями чего-н., служащая формой для отливки или штамповки. С матриц отливают типографские литеры. Матрицы употребляются при чеканке монеты. 2. Бумажная форма, являющаяся обратной копией набора и служащая для отливки стереотипа (тип.). Печатать что-н. с матриц.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
ма́трица
1. техн. форма с углубленным изображением рисунка, используемое во многих технологических процессах
2. техн. система каких-либо элементов, расположенных прямоугольником ◆ Матрица светочувствительных элементов.
3. матем. математический объект в виде таблицы чисел (или других сходных математических объектов) ◆ Если количество строк матрицы равно количеству столбцов, то такая матрица называется квадратной.
Фразеологизмы и устойчивые сочетания
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: сокровенность — это что-то нейтральное, положительное или отрицательное?
Математика для чайников. Матрицы и основные действия над ними
Определение матрицы
Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.
Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A, матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n, где m – количество строк, а n – количество столбцов.
Что можно делать с матрицами? Складывать/вычитать, умножать на число, умножать между собой, транспонировать. Теперь обо всех этих основных операциях над матрицами по порядку.
Операции сложения и вычитания матриц
Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример. Выполним сложение двух матриц A и В размером два на два.
Вычитание выполняется по аналогии, только с противоположным знаком.
Умножение матрицы на число
На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:
Операция умножения матриц
И пример с реальными числами. Умножим матрицы:
Операция транспонирования матрицы
Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:
Определитель матрицы
Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!
Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.
Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.
А если матрица три на три? Тут уже посложнее, но справиться можно.
Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.
К счастью, вычислять определители матриц больших размеров на практике приходится редко.
Склонение слова «Матрица»
Склонение слова по падежам: именительный, родительный, дательный, винительный, творительный, предложный. В множественном и единственном числе. Удобный поиск склонений для слов, более 83451 слов в нашей базе. Посмотрите обучающий видео урок как правильно склонять слова.
Единственное число
Падеж | Вопрос | Слово |
---|---|---|
именительный | Кто, что? | матрица |
родительный | Кого, чего? | матрицы |
дательный | Кому, чему? | матрице |
винительный | Кого, что? | матрицу |
творительный | Кем, чем? | матрицей |
предложный | О ком, о чём? | матрице |
Множественное число
Падеж | Вопрос | Слово |
---|---|---|
именительный | Кто, что? | матрицы |
родительный | Кого, чего? | матриц |
дательный | Кому, чему? | матрицам |
винительный | Кого, что? | матрицы |
творительный | Кем, чем? | матрицами |
предложный | О ком, о чём? | матрицах |
Важно знать о склонении слов
Склонение существительных
Изменение имён существительных по падежам характеризуется изменением их окончаний, которые называются падежными формами. Всего в русском языке существует шесть падежей, каждый из которых имеет свой вспомогательный вопрос.
Для того, чтобы определить падеж имени существительного, нужно попробовать задать к нему один из вспомогательных вопросов.
Также существуют несклоняемые имена существительные, т.е. те, которые имеют во всех падежах одну и ту же форму. К несклоняемым относятся как имена нарицательные (например, «кофе» или «какао»), так и имена собственные (например, «Гёте»).
Как правило, несклоняемыми существительными оказываются слова, заимствованные из иностранных языков. Они могут относиться ко всем трем родам.
Склонение имен числительных
Склонение числительных не имеет единого образца, оно представлено несколькими типами:
Склонение прилагательных
Склонение прилагательных – это изменение их по родам, падежам и числам.
Однако не все прилагательные изменяются и по родам, и по числам, и по падежам. Краткие прилагательные не изменяются по падежам, а прилагательные в форме простой сравнительной степени вообще не склоняются.
Для того, чтобы правильно склонять имена прилагательные, нужно знать их падежные вопросы в обоих числах.
Важно понимать, что окончание прилагательного можно проверить окончанием вопроса.
Видеоурок. Русский язык для детей. Склонение имен прилагательных
Математика для чайников. Матрицы и основные действия над ними
Определение матрицы
Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.
Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A, матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n, где m – количество строк, а n – количество столбцов.
Что можно делать с матрицами? Складывать/вычитать, умножать на число, умножать между собой, транспонировать. Теперь обо всех этих основных операциях над матрицами по порядку.
Операции сложения и вычитания матриц
Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример. Выполним сложение двух матриц A и В размером два на два.
Вычитание выполняется по аналогии, только с противоположным знаком.
Умножение матрицы на число
На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:
Операция умножения матриц
И пример с реальными числами. Умножим матрицы:
Операция транспонирования матрицы
Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:
Определитель матрицы
Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!
Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.
Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.
А если матрица три на три? Тут уже посложнее, но справиться можно.
Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.
К счастью, вычислять определители матриц больших размеров на практике приходится редко.