Главная » Правописание слов » Как написать игру на html

Слово Как написать игру на html - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Как написать игру на JavaScript

Современные браузеры позволяют создавать игры с полноценной графикой. Рассказываем, как написать простые гонки на JavaScript и HTML5.

Сейчас браузеры дают JavaScript-разработчикам огромное количество возможностей для создания интересных сайтов. Раньше для этого использовался Flash — он был популярен, и на нём было создано бессчётное количество игр, плееров, необычных интерфейсов и так далее. Однако они уже не запустятся ни в одном современном браузере.

Дело в том, что технология Flash тяжеловесна, а также полна уязвимостей, поэтому от неё стали отказываться. Тем более что появилась альтернатива в виде HTML5 — в этой версии появился элемент canvas.

Canvas — это холст, на котором можно рисовать с помощью JS-команд. Его можно использовать для создания анимированных фонов, различных конструкторов и, самое главное, игр.

Из этой статьи вы узнаете, как создать браузерную игру на JavaScript и HTML5. Но прежде рекомендуем ознакомиться с объектно-ориентированным программированием в JS (достаточно понимать, что такое класс, метод и объект). Оно лучше всего подходит для создания игр, потому что позволяет работать с сущностями, а не с абстрактными данными. Однако есть и недостаток: ООП не поддерживается ни в одной из версий Internet Explorer.

Пишет о программировании, в свободное время создает игры. Мечтает открыть свою студию и выпускать ламповые RPG.

Вёрстка страницы с игрой

Для начала нужно создать страницу, на которой будет отображаться холст. Для этого потребуется совсем немного HTML:

Теперь нужно добавить стили:

Обратите внимание, что в HTML элементу canvas были заданы нулевые ширина и высота, в то время как в CSS указано 100%. В этом плане холст ведёт себя как изображение. У него есть фактическое и видимое разрешение.

С помощью стилей меняется видимое разрешение. Однако при этом размеры картинки останутся прежними: она просто растянется или сожмётся. Поэтому фактические ширина и высота будут указаны позже — через скрипт.

Скрипт для игры

Для начала добавим заготовку скрипта для игры:

В этом скрипте есть всё, что необходимо для создания игры: данные (массивы), функции обновления, прорисовки и управления. Остаётся только дополнить это основной логикой. То есть указать, как именно объекты будут себя вести и как будут выводиться на холст.

Логика игры

Во время вызова функции Update () будут меняться состояния игровых объектов. После этого они отрисовываются на canvas с помощью функции Draw (). То есть на самом деле мы не двигаем объекты на холсте — мы рисуем их один раз, потом меняем координаты, стираем старое изображение и выводим объекты с новыми координатами. Всё это происходит так быстро, что создаётся иллюзия движения.

Рассмотрим это на примере дороги.

На холсте выводится вот такое изображение и постепенно двигается вниз. Сразу же следом будет выводиться ещё одна такая же картинка, благодаря чему создастся ощущение бесконечной дороги.

Для этого создадим класс Road:

В массив с фонами добавляются два объекта класса Road:

Теперь можно изменить функцию Update (), чтобы положение изображений менялось с каждым кадром.

Остаётся только добавить вывод этих изображений:

Теперь можно посмотреть, как это работает в игре:

Пора добавить игрока и NPC. Для этого нужно написать класс Car. В нём будет метод Move (), с помощью которого игрок управляет своим автомобилем. Движение NPC будет осуществляться с помощью Update (), в котором просто меняется координата Y.

Источник

Полное руководство по созданию игр HTML5 с Canvas и SVG

В настоящее время я провожу большую часть своего времени, объясняя студентам, любителям, профессиональным разработчикам и учителям, как создавать игры с использованием HTML5. Тогда, как я недавно подумал, вместо того, чтобы хранить все эти детали для небольшой аудитории, не будет ли разумнее поделиться этим с вами?

Но почему в настоящее время так много людей интересуются играми HTML5?

Ну, просто потому, что сегодня мы действительно можем использовать HTML5 для нацеливания на несколько платформ, используя один и тот же код: конечно, для настольных компьютеров (с IE9 / IE10, Firefox, Chrome, Opera и Safari), для планшетов и телефонов iOS и Android и телефонов и Windows 8 (и его будущее, связанное с миллионами планшетов и ПК, также тепло приветствует HTML5-игры! Затем я часто вижу некоторые игровые проекты HTML5, портированные на каждую из этих платформ практически без усилий.

Более того, производительность современных движков JavaScript в сочетании с графическими слоями с аппаратным ускорением позволяет нам уверенно создавать великолепные игры на HTML5.

Примечание: в этой статье мы поговорим только о

Canvas и SVG: два способа рисования на экране

Вам также следует взглянуть на эти две замечательные сессии из MIX11 :

Изучив весь этот контент, вы, вероятно, лучше поймете, почему почти во всех играх HTML5 используется Canvas, а не SVG. Canvas предлагает хорошо известную модель разработки для разработчиков игр (низкоуровневые API-интерфейсы рисования) и теперь очень хорошо аппаратно ускоряется большинством последних браузеров. Тем не менее, SVG и его технология на основе векторов, естественно, лучше вооружены для масштабирования между устройствами без потери качества. Вам просто нужно использовать магическое свойство ViewBox в SVG, которое справится с этим за вас. Тогда ваши игровые активы будут очень легко масштабироваться от 3 до 80 дюймов!

Полезные библиотеки и инструменты

Графика

Написание XML-узлов SVG вручную или даже игра с низкоуровневыми API-интерфейсами Canvas может показаться забавным, но не очень продуктивным. Вот полезный набор инструментов и библиотек, которые мне нравятся, которые могут помочь вам создать части вашей игры на HTML5.

— InkScape : бесплатное настольное программное обеспечение с открытым исходным кодом
— SVG Editor : онлайн-программное обеспечение, работающее прямо в вашем браузере.

Adobe Illustrator также поддерживает SVG в качестве цели экспорта, но это немного дороже. ?

Примечание: мы также можем объединить все эти графические эффекты с использованием CSS3 2D и 3D-преобразований в сочетании с переходами или анимацией в вашей игре. Но я решил сосредоточиться на Canvas и SVG в этой статье.

Физический Двигатель

Обработка событий мультитач

Если вы хотите создать игру для нескольких устройств, вам нужно будет поддерживать Touch. В настоящее время существуют две спецификации для Touch Events. Так что официального стандарта пока нет. Если вы хотите узнать больше о том, почему, вот интересная статья: « Прикосновение к патентам»

Источник

Интерактивная сетевая игра на HTML, CSS и JavaScript

Как-то поиграв в оффисе в hexbug, зародилась идея написать игрушку по схожим мотивам.
По текущему роду деятельности я веб разработчик и поэтому захотелось чтобы в игре использовался только HTML, JavaScript и CSS — средства знакомые каждому вебразработчику. Никакого вам flash или даже canvas. Звучит хардкорно, но на самом деле сейчас HTML + CSS3 это очень мощные и гибкие средства визуализации, а писать игровой код на JavaScript — одно удовольствие. Вдобавок захотелось чтобы игра была с сетевым мультиплеером, притом интерактивной — никаких там шашек, карточных игр, пошаговых стратегий, все должно быть в действии и движении.

Вот что получилось в итоге:

В статье я оставлю набор заметок возникших при написании прототипа игрушки, нацеленных больше на подход «как сделать попроще и побыстрее». Думаю статья может сгодиться как некое подспорье для новичков в этом увлекательном деле.

Геймплей

Задача игры — вырастить свою колонию жуков и уничтожить всех юнитов противника. Жуки хаотично бегают по игровому полю, а задача игрока — помогать им находить бонусы в виде различной еды и оказывать помощь своим юнитам, на которых было произведено нападение.

Бонусы в игре:
кекс — дает 5xp, при наборе 15xp жук размножается
яблоко — восстанавливает 50hp, если жук полностью здоров то добавляет 15 дополнительных hp
перец — увеличивает атаку на 5dm
желудь — дает 2xp и швыряется в ближайшего противника, при попадании наносит тройной урон
мухомор — дает 1хp и позволяет произвести ядовитый выстрел, при попадании наносит 1/2 урона и замедляет жертву

Играть могут от 2 до 4 человек. Можно также просто подключиться к серверу из разных вкладок браузера, и поиграть одному.
Попробовать поиграть можно здесь.
Исходники на github.
Архив с игрой.

Графика

HTML и CSS конечно весьма не шустрые в плане производительности, когда речь идет об отрисовке графики, требующейся в интерактивных играх. Но если наша цель написать прототип игрушки, то этот вариант вполне сойдет. В конечном итоге «узкие моменты» в виде отрисовки основной сцены игры можно в дальнейшем побыстрому перебросить на canvas.

Для работы с графикой в 2д игре нам понадобятся операции перемещения, вращения и маштабирования спрайтов.

Перемещаем спрайт устанавливая у него position: absolute и изменяя left и top

Для вращения спрайтов воспользуемся transform: rotate. А с помощью transform: origin можно задать ось вращения (по умолчанию она в центре спрайта).

Для маштабирования изменяем размреры спрайта с помощью свойств width и height, перед этим установив подходящее значение в background-size:

Аппаратное ускорение

Для повышения производительности и соответственно плавности анимации можно заставить браузер использовать GPU для отрисовки анимаций. Для этого нужно работать со спрайтами как с трехмерными объектами. Теперь сделаем операции перемещения, вращения и маштабирования через translate3d, rotate3d и scale3d:

Всех этих операций вполне хватило чтобы собрать графику в игре из нескольких нарисованных в «пэйнте» спрайтов.

Физика

Помимо отрисовки игровых объектов, нужно также наладить их взаимодействие друг с другом.
В bugsarena все взаимодейсвие заключается в обработке столкновений спрайтов.
Так как планируется делать все максимально по простому, ограничимся школьной математикой.
Наверно одна из самых частых математических операций в играх — нахождение расстояния между двумя точками. По суте задача сводится к нахождению гипотенузы в треугольнике:

Теперь благодаря этой простой формуле можно делать множество операций, таких как нахождения расстояния до объекта, нахождение самого ближайшего и самого удаленного объекта, нахождение объектов в заданном радиусе а так же обнаруживать столкновение объектов в форме круга.
Все объекты игры отрисовываются в достаточно небольшие спрайты размером 20х20, можно пренебречь их формой и расчитывать столкновения как-будто они все вписанны в окружность с диаметром 20. Тогда можно сказать что 2 объекта столкнулись когда растояние между их центрами меньше или равно сумме их радиусов.

Используемые паттерны разработки

В нескольких словах игровую логику можно описать так: Есть объект класса «Game» описывающий игровой мир у которого есть массив объектов-наследников от класса «GameObject» — это все объекты игрового мира. Каждый игровой кадр Game проходится по всем игровым объектам и вызывает у каждого метод step. В методе step каждого объекта описывается что он должен сделать за этот кадр (переместиться, обработать столкновения, уничтожиться и тд.) Для реализации ООП в игре используется объект Class из Simple JavaScript Inheritance от John Resig, доработанный до поддержки миксинов и статических свойств.
Наверное один из самых удачных патернов для создания новых объектов в играх это использование фабричного метода. Суть в том что мы не будем напрямую через вызов new Создавать объекты, а воспользуемся методом который за нас это сделает. Фабричный метод избавит нас от возни с подключением нового объекта в игровой мир.

Например мы хотим создать объект класса Block включить его в игровой мир и расположить в заданном месте:

Создание игровых карт

Итак когда игра уже написанна хочется разнообразить ее несколькими игровыми картами. Создавать все игровые объекты кодом (вызывая метод за методом) очень утомительно и ненаглядно. Писать свой редактор карт займет достаточно много времени. Но есть простой способ — можно воспользоваться текстовым редактором или своей ide для наглядного создания следующим подходом:

Сетевой код

Сетевой код написан с использованием вебсокетов спомощью библиотеки socket.io, сервер игры написан на nodejs.
Сделать по простому реализацию интерактивной сетевой игры да и с условием что нам доступнен только протокол TCP та еще задачка.
Сейчас для таких игр используют быстрый протокол UDP который к сожалению недоступен через socket.io, правда если есть сильное желание можно посмотреть в сторону WebRTC. Важно чтобы игра шла плавно без рывков и была синхронизированна на всех клиентах. Сервер будет простой и будет заниматься только передачей сообщений клиентов, так как только их действия влияют на ход игры. Он не будет заниматься передачай состояний игровых объектов, и вобще ничего не будет знать об игровом мире, кроме состояния игры — ожидание игроков/идет игра

Всю временную ленту игры можно разбить на кадры. Клиенты посылают сообщения о своих действиях серверу, сервер накапливает эти сообщения и через определенное количество кадров рассылает накопленное клиетам. Это как некая вариация очень ускоренной пошаговой стратегии — всем игрокам дано всего несколько кадров чтобы сделать свой ход (отправить сообщения серверу). По истечении этих кадров сервер рассылает клиентам все действия за предыдущий ход, которые тут-же начинают воспроизводиться. В это же время игроки могут сделать новый ход.

Этот подход хорош тем что он прост и клиенты всегда знают в какой по счету кадр запускаются действия приходящие с сервера и могут спокойно продолжать игру до наступления этого кадра. Сервер же должен прислать действия клиентов за некоторое время до наступления этого ключевого кадра, чтобы клиенты не простаивали. Недостаток этого подхода — не слишком быстрая реакция на действия игроков, и какой-нибудь активный шутер было бы играть сложновато.

Можно задаться вопросом — если мы передаем только действия клиентов, то как синхронизировать поведение объектов основанное на случайности? Ведь различные бонусы появляются в совершенно случайных местах, но у всех клиентов это должны быть одни и теже места. Жуки бегают весьма хаотично, постоянно меняя направление своего бега, и приэтом весь этот «хаос» должен быть совершенно одинаковым и идти по одному и тому же сценарию у всех. Проблемму с синхронизацией такого поведения можно решить тем, чтобы везде где используются случайные величины, не использовать для этого Math.random, а использовать свой генератор псевдослучайных чисел (ГПСЧ). Суть в следующем — перед запуском игры сервер генерирует случайное число и передает его каждому присоединившемуся клиенту. С помощью этого числа клинет инициализирует ГПСЧ котрый на всех клиентах будет выдавать одинаковую последовательность псевдослучайных чисел. Простейшая реализация такого ГПСЧ — генератор парка-миллера
Реализация на js:

Делаем сервис из nodejs приложения

Делаем файл исполняемым.

Теперь можно воспользоваться командами

Источник

Создание браузерных 3d-игр с нуля на чистом html, css и js. Часть 1/2

Современная вычислительная техника позволяет создавать классные компьютерные игры! И сейчас, достаточно популярны игры с 3d-графикой, так как, играя в них, ты окунаешься в вымышленный мир и теряешь всякую связь с реальностью. Развитие интернета и браузерных технологий сделало возможным запускать головоломки и стрелялки в любимом Хроме, Мозилле или еще в чем-то там (про Эксплорер помолчим) в онлайн-режиме, без загрузки. Так вот, здесь я расскажу о том, как создать простую трехмерную браузерную игру.

1. Инструменты для разработки

Я использую для проверки сайтов и игр только 2 браузера: Chrome и Mozilla. Все остальные браузеры (кроме того самого Эксплорера) построены на движке первого, поэтому использовать их я не вижу смысла, ибо результаты точно такие же, как и в Chrome. Для написания кода достаточно Notepad++.

2. Как реализуется трехмерное пространство в html?

Посмотрим на систему координат блока:

По умолчанию, дочерний блок имеет координаты (left и top) 0 пикселей по x и 0 пикселей по y. Смещение (translate), также 0 пикселей по всем трем осям. Покажем это на примере, для чего создадим новую папку. В нем создадим файлы index.html, style.css и script.js. Откроем index.html и запишем туда следующее:

В файле style.css зададим стили для элементов “container” и “world”.

Сохраним. Откроем index.html c помощью Chrome, получим:

Попробуем применить translate3d к элементу “world”:

Как вы поняли, я перешел в полноэкранный режим. Теперь зададим смещение по оси Z:
transform:translate3d(200px,100px,-1000px);

Если вы снова откроете html-файл в браузере, то никаких изменений вы не увидите. Чтобы увидеть изменения, нужно задать перспективу для объекта “container”:

Квадрат отдалился от нас. Как работает перспектива в html? Взглянем на картинку:

Теперь повернем “world” вокруг какой-нибудь оси. В сss можно использовать 2 способа вращения. Первый – вращение вокруг осей x,y и z. Для этого используются transform-свойства rotateX(), rotateY() и rotateZ(). Второй – вращение вокруг заданной оси с помощью свойства rotate3d(). Мы будем использовать первый способ, так как он больше подходит для наших задач. Обратите внимание, что оси вращения выходят из центра прямоугольника!

Заметно смещение против часовой стрелки. Если же мы добавим rotateY(), то получим смещение уже по оси Y. Важно заметить, что при вращении блока оси вращения также поворачиваются. Вы также можете поэкспериментировать с различными значениями вращения.
Теперь внутри блока “world” создадим еще один блок, для этого добавим тег в html-файл:

В style.css добавим стили к этому блоку:

То есть, элементы внутри блока “world” будут трансформироваться в составе этого блока. Попробуем повернуть “square1” по оси y, добавив к нему стиль вращения:
transform: rotateY(30deg);

«Где вращение?» — спросите вы? На самом деле именно так выглядит проекция блока “square1” на плоскость, образуемую элементом “world”. Но нам нужна не проекция, а настоящее вращение. Чтобы все элементы внутри “world” стали объемными, необходимо применить к нему свойство transform-style:preserve-3d. После подстановки свойства внутрь списка стилей “world” проверим изменения:

Отлично! Половина блока “square” скрылась за голубым блоком. Чтобы его полностью показать, уберем цвет блока “world”, а именно, удалим строку background-color:#C0FFFF; Если мы добавим еще прямоугольников внутрь блока “world”, то мы можем создать трехмерный мир. Сейчас же уберем смещение мира “world”, удалив строку со свойством transform в стилях для этого элемента.

3. Создаем движение в трехмерном мире

Для того, чтобы пользователь мог по этому миру передвигаться, нужно задать обработчики нажатия клавиш и перемещения мыши. Управление будет стандартным, какое присутствует в большинстве 3д-шутеров. Клавишами W, S, A, D мы будем перемещаться вперед, назад, влево, вправо, пробелом мы будем прыгать (проще говоря – перемещаться вверх), а мышью мы будем менять направление взгляда. Для этого откроем пока еще пустой файл script.js. Сначала впишем туда такие переменные:

Изначально клавиши не нажаты. Если мы нажмем клавишу, то значение определенной переменной изменится на 1. Если отпустим ее, то она снова станет 0. Реализуем это посредством добавления обработчиков нажатия и отжатия клавиш:

Номер 32 – код пробела. Как видите, тут появилась переменная onGround, указывающая на то, находимся ли мы на земле. Пока разрешим движение вверх, добавив после переменных press… переменную onGround:

Итак, мы добавили алгоритм нажатия и отжатия. Теперь необходимо добавить само передвижение. Что, собственно, мы передвигаем. Представим, что у нас есть объект, который мы двинаем. Назовем его “pawn”. Как и принято у нормальных разработчиков, для него мы создадим отдельный класс “Player”. Классы в javaScript создаются, как ни странно, с помощью функций:

Вставим этот код в script.js в самом начале файла. В конце же файла создадим объект данного типа:

Распишем, что означают эти переменные. x, y, z – это начальные координаты игрока, rx, ry – углы его поворота относительно осей x и y в градусах. Последняя записанная строка означает, что мы создаем объект “pawn” типа “player” (специально пишу тип, а не класс, так как классы в javascript означают несколько другие вещи) с нулевыми начальными координатами. Когда мы двигаем объект, координата мира изменяться не должна, а должна изменяться координата «pawn». Это с точки зрения переменных. А с точки зрения пользователя, игрок находится на одном месте, а вот мир двигается. Таким образом, нужно заставить программу изменять координаты игрока, обрабатывать эти изменения и двигать, в конце концов, мир. На деле это проще, чем кажется.

Итак, после загрузки документа в браузер мы запустим функцию, которая перерисовывает мир. Напишем функцию перерисовки:

В новых браузерах world будет соответствовать элементу с однако надежнее ее присвоить перед функцией update() с помощью следующей конструкции:

Мы будем изменять положение мира каждые 10 мс (100 обновлений в секунду), для чего запустим бесконечный цикл:

Запустим игру. Ура, теперь мы можем двигаться! Однако мир вылазит за пределы рамок элемента «container». Чтобы этого не происходило, зададим css-свойство для него в style.css. Добавим строку overflow:hidden; и посмотрим на изменения. Теперь мир остается в пределах контейнера.

Вполне возможно, что вы не всегда понимаете, куда нужно записывать те или иные строчки кода, поэтому сейчас я вам представлю файлы, которые, как я полагаю, у вас должны получиться:

Если у вас что-то по-другому, обязательно поправьте!

Мы научились двигать персонажа, однако мы еще не умеем поворачивать его! Поворот персонажа, конечно же, будет осуществляться с помощью мыши. Для мыши к переменным состояния клавиш press… мы добавим переменные состояния движения мыши:

А после обработчиков нажатия-отжатия вставим обработчик движения:

В функцию update добавим поворот:

Обратите внимание на то, что движение мыши по оси y вращает pawn по оси x и наоборот. Если мы посмотрим на результат, то ужаснемся от увиденного. Дело в том, что если смещения нет, то MouseX и MouseY остаются прежними, а не приравниваются к нулю. Значит, после каждой итерации update смещения миши должно обнуляться:

Уже лучше, мы избавились от инерции вращения, однако вращение происходит все равно странно! Чтобы понять, что все-таки происходит, добавим div-элемент «pawn» внутрь «container»:

Зададим ему стили в style.css:

Проверим результат. Теперь все ровно! Единственное — синий квадрат остается впереди, но пока оставим это. Чтобы сделать игру от первого лица, а не от третьего, нужно приблизить мир к нам на значение perspective. Сделаем это в script.js в функции update():

Теперь можно делать игру от первого лица. Скроем pawn добавив строку в style.css:

Отлично. Сразу скажу, что ориентироваться в мире с одним квадратом крайне тяжело, поэтому создадим площадку. Добавим в «world» блок «square2»:

А в style.css добавим стили для него:

Теперь все четко. Ну… не совсем. Когда мы нажимаем по клавишам, мы движемся строго по осям X и Z. А мы хотим сделать движение по направлению взгляда. Сделаем следующее: в самом начале файла script.js добавим 2 переменные:

Градус — это pi/180 от радиана. Нам придется применить синусы и косинусы, которые считаются от радиан. Что нужно сделать? Взгляните на рисунок:

Когда наш взгляд направлен под углом и мы хотим пойти вперед, то изменятся обе координаты: X и Z. В случае перемещения в сторону тригонометрические функции просто поменяются местами, а перед образовавшимся синусом изменится знак. Изменим уравнения смещений в update():

Внимательно просмотрите все файлы полностью! Если у вас что-то оказалось не так, то потом обязательно буду ошибки, из-за которых вы сломаете голову!

С движением мы почти разобрались. Но осталось неудобство: курсор мыши может двигаться только в пределах экрана. В трехмерных шутерах можно вращать мышью сколь угодно долго и сколь угодно далеко. Сделаем также: при нажатии на экран игры (на “container”) курсор будет пропадать, и мы сможем вращать мышью без ограничений на размер экрана. Активируем захват мыши при нажатии на экран, для чего перед обработчиками нажатия клавиш поставим обработчик нажатия мыши на “container”:

Теперь совсем другое дело. Однако лучше вообще сделать так, чтобы вращение производилось только тогда, когда курсор захвачен. Введем новую переменную после переменных нажатия клавиш press…

Добавим обработчик изменения состояния захвата курсора (захвачен или нет) перед обработчиком захвата курсора (извините за тавтологию):

А в update() добавим условие вращения “pawn”:

А сам захват мыши при клике по контейнеру разрешим только тогда, когда курсор еще не захвачен:

С движением мы полностью разобрались. Перейдем к генерации мира

4. Загрузка карты

Мир в нашем случае удобнее всего представить в виде множества прямоугольников, имеющих разное местоположение, поворот, размеры и цвет. Вместо цвета также можно использовать текстуры. На самом деле, все современные трехмерные миры в играх – это набор треугольников и прямоугольников, которые называют полигонами. В крутых играх их количество может достигать десятков тысяч в одном только кадре. У нас же их будет около сотни, так как браузер сам по себе имеет невысокую графическую производительность. В предыдущих пунктах мы вставляли блоки “div” внутрь “world”. Но если таких блоков много (сотни), то вставлять каждый из них в контейнер очень утомительно. Да и уровней может быть много. Поэтому пусть эти прямоугольники вставляет javaScript, а не мы. Для него же мы будем создавать специальный массив.

Откроем index.html и удалим из блока “world” все внутренние блоки:

Теперь создадим массив прямоугольников (запихнем его, примеру, между конструктором player и переменными press… в script.js):

Можно было это сделать в виде конструктора, но пока обойдемся чисто массивом, так как запуск цикла расстановки прямоугольников проще реализовать именно через массивы, а не через конструкторы. Я же поясню, что означают цифры в нем. Массив map содержит одномерные массивы из 9 переменных: [. ]. Я думаю, вы понимаете, что первые три числа – это координаты центра прямоугольника, вторые три числа – углы поворота в градусах (относительно того же центра), затем два числа – его размеры и последнее число – фон. Причем фон может быть сплошным цветом, градиентом или фотографией. Последнее очень удобно использовать в качестве текстур.

Массив мы записали, теперь запишем функцию, которая переделает этот массив в собственно прямоугольники:

Поясню, что происходит: мы создаем новую переменную, которая указывает на только что созданный элемент. Ему мы присваиваем id и css-класс (именно это и имеется ввиду под словом класс в языке javaScript), задаем ширину с высотой, фон и трансформацию. Примечательно, что в трансформации помимо координат центра прямоугольника мы указываем смещение на 600 и 400 и половины размеров для того, чтобы центр прямоугольника точно оказался в точке с нужными координатами. Запустим генератор мира перед таймером:

Теперь мы видим площадку с розовыми стенами и серым полом. Как видите, создание карты технически несложно реализовать. А в результате ваш код в трех файлах должен получиться примерно таким:

Если все хорошо, переходим к следующему пункту.

5. Столкновения игрока с объектами мира

Мы создали технику движения, генератор мира из массива. Мы можем передвигаться по миру, который может быть красивым. Однако наш игрок еще никак не взаимодействует с ним. Чтобы это взаимодействие происходило, нам необходимо проверять, сталкивается ли игрок с каким-нибудь прямоугольником или нет? То есть, мы будем проверять наличие коллизий. Для начала вставим пустую функцию:

А вызывать ее будем в update():

Как это происходит? Представим себе, что игрок – это шар с радиусом r. И он движется в сторону прямоугольника:

Очевидно, что если расстояние от шара до плоскости прямоугольника больше r, то коллизии точно не происходит. Чтобы узнать это расстояние, можно перевести координаты игрока в систему координат прямоугольника. Напишем функцию перевода из мировой системы в систему прямоугольника:

И обратную функцию:

Вставим эти функции после функции update(). Я не буду объяснять, как это работает, потому что мне не хочется рассказывать курс аналитической геометрии. Скажу, что есть такие формулы перевода координат при вращении и мы просто ими воспользовались. С точки зрения прямоугольника наш игрок расположен вот так:

В этом случае условие коллизии становится таким: если после смещения шара на величину v (v – это вектор) координата z между –r и r, а координаты x и y лежат в пределах прямоугольника или отстоят от него на величину, не большую r, то объявляется коллизия. В этом случае координата игрока по z после смещения будет составлять r или – r (в зависимости от того, с какой стороны придет игрок). В соответствии с этим, смещение игрока изменяется. Мы специально вызываем коллизию перед тем, как в update() координаты игрока будут обновлены, чтобы вовремя изменить смещение. Таким образом, шар никогда не пересечется с прямоугольником, как бывает в других алгоритмах коллизии. Хотя физически игрок будет представлять собой, скорее, случае куб, мы не будем обращать на это внимание. Итак, реализуем это в javaScript:

x0,y0 и z0 – начальные координаты игрока в системе координат прямоугольника (без поворотов. x1,y1 и z1 – координаты игрока после смещения без учета коллизии. point0, point0, point1 и point2 – начальный радиус-вектор, радиус-вектор после смещения без коллизии и радиус-вектор с коллизией соответственно. map[i][3] и другие, если вы помните, это углы поворота прямоугольника. Заметим, что в условии мы к размерам прямоугольника прибавляем не 100, а 98. Это костыль, зачем, подумайте сами. Запустите игру и вы увидите довольно качественные столкновения.

Как видим, все эти действия происходят в цикле for для всех прямоугольников. При их большом количестве такая операция становится очень дорогой, так как тут и так есть 3 вызова функций преобразований координат, которые тоже производят достаточно много математических операций. Очевидно, что если прямоугольники находятся очень далеко от игрока, то коллизию считать не имеет смысла. Добавим это условие:

Итак, с коллизиями мы разобрались. Мы спокойно можем взбираться и по наклонным поверхностям, а возникновение багов возможно только на медленных системах, если, конечно, возможно. По сути, вся основная техническая часть на этом закончилась. Нам осталось лишь добавить частные вещи, такие как гравитация, вещи, меню, звуки, красивую графику. Но это достаточно легко сделать, а к самому движку, который мы только что сделали, это отношения не имеет. Поэтому об этом я расскажу в следующей части. А сейчас проверьте то, что у вас получилось с моим кодом:

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать игру на html, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать игру на html", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать игру на html:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *