Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой.
В этой статье мы разберемся с задачей нахождения уравнения плоскости в прямоугольной системе координат в трехмерном пространстве, когда известны координаты трех различных точек этой плоскости, не лежащих на одной прямой. Сначала покажем принцип нахождения уравнения плоскости, после чего перейдем к решению примеров и задач, в которых требуется составить уравнение плоскости, проходящей через три заданные точки.
Навигация по странице.
Нахождение уравнения плоскости, проходящей через три заданные точки.
Прежде чем приступать к составлению уравнения плоскости, проходящей через три заданные точки пространства, вспомним одну аксиому: через три несовпадающие и не лежащие на одной прямой точки трехмерного пространства проходит единственная плоскость. Таким образом, задав три различных и не лежащих на одной прямой точки, мы в трехмерном пространстве однозначно определим плоскость, проходящую через эти точки.
Покажем два способа ее решения.
Первый способ составления уравнения плоскости, проходящей через три заданные точки .
Известно, что общее уравнение плоскости вида задает в прямоугольной системе координат Oxyz плоскость , которая проходит через точку , а нормальный вектор плоскости имеет координаты . Следовательно, мы можем составить общее уравнение плоскости, если знаем координаты точки, через которую она проходит, и координаты нормального вектора этой плоскости. От этого знания и будем отталкиваться при нахождении уравнения плоскости, проходящей через три заданные точки .
Итак, из условия задачи нам известны координаты точки (даже координаты трех точек), через которую проходит плоскость, уравнение которой нам требуется составить. Осталось отыскать координаты нормального вектора этой плоскости.
Так как нормальный вектор плоскости и любой ненулевой вектор этой плоскости перпендикулярны, то вектор перпендикулярен как вектору , так и вектору . Следовательно, в качестве вектора можно принять векторное произведение векторов и . Так как и (при необходимости обращайтесь к статье вычисление координат вектора по координатам точек), то . После вычисления записанного определителя, станут видны координаты нормального вектора , и можно записывать требуемое уравнение плоскости, проходящей через три заданные точки.
Второй способ нахождения уравнения плоскости, проходящей через три заданные точки .
Очевидно, что множество точек определяет в прямоугольной системе координат Oxyz в трехмерном пространстве плоскость, проходящую через три различные и не лежащие на одной прямой точки , тогда и только тогда, когда три вектора и компланарны.
Следовательно, должно выполняться условие компланарности трех векторов и , то есть, смешанное произведение векторов должно быть равно нулю: . Это равенство в координатной форме имеет вид . Оно, после вычисления определителя, представляет собой общее уравнение плоскости, проходящей через три заданные точки .
Далее, от полученного общего уравнения плоскости, проходящей через три заданные точки, Вы при необходимости можете перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости.
Осталось рассмотреть решения примеров, в которых находится уравнение плоскости, проходящей через три несовпадающие и не лежащие на одной прямой точки.
Примеры составления уравнения плоскости, проходящей через три заданные точки.
В предыдущем пункте статьи мы рассмотрели два способа нахождения уравнения плоскости, проходящей через три различные и не лежащие на одной прямой точки. Давайте рассмотрим их применение при решении задачи.
Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой
В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.
Как найти уравнение плоскости, которая проходит через 3 заданные точки
Для начала нам необходимо вспомнить одну аксиому, которая звучит следующим образом:
Если три точки не совпадают друг с другом и не лежат на одной прямой, то в трехмерном пространстве через них проходит только одна плоскость.
Иными словами, если у нас есть три разных точки, координаты которых не совпадают и которые нельзя соединить прямой, то мы можем определить плоскость, проходящую через нее.
Зная координаты нормального вектора и координаты точки, через которую проходит плоскость, мы можем записать общее уравнение этой плоскости.
Из этого мы и будем исходить в дальнейшем.
На схеме это будет выглядеть так:
Запишем полученное уравнение в координатной форме:
От полученного в результате уравнения можно перейти к уравнению плоскости в отрезках или к нормальному уравнению плоскости, если этого требуют условия задачи.
В следующем пункте мы приведем примеры того, как указанные нами подходы реализуются на практике.
Примеры задач на составление уравнения плоскости, проходящих через 3 точки
Ранее мы выделили два подхода, с помощью которых можно найти искомое уравнение. Давайте посмотрим, как они применяются в решениях задач и когда следует выбирать каждый из них.
Решение
Используем поочередно оба способа.
Теперь вычислим их векторное произведение. Вычисления определителя расписывать при этом не будем:
Это и есть нужное нам уравнение плоскости, которая проходит через три точки.
Мы получили нужное нам уравнение.
А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.
Решение
Векторное произведение будет равно:
Если мы используем второй способ, у нас получится:
Если вы хотите найти хоть один ответ этой задачи из бесконечного множества ее вариантов, то нужно выполнить следующие шаги:
Уравнение плоскости через 3 точки
Вы будете перенаправлены на Автор24
Для начала стоит напомнить, как выглядит общее уравнение плоскости:
$Ax \cdot + By + Cz + D = 0\left(1\right)$,
Также в дальнейшем нам пригодится уравнение плоскости, заданной точкой, лежащей в данной плоскости и нормальным вектором:
Теперь непосредственно к делу.
Уравнение плоскости через три точки можно выразить несколькими способами: с помощью смешанного произведения векторов и выразив сначала нормальный вектор плоскости и используя одну точку.
Уравнение плоскости, проходящей через 3 точки, через смешанное произведение векторов
Рисунок 1. Плоскость через 3 точки. Автор24 — интернет-биржа студенческих работ
Соответственно, для того чтобы вычислить это смешанное произведение, необходимо вычислить определитель третьего порядка, каждая строка которого является координатами вышеперечисленных векторов.
Готовые работы на аналогичную тему
Составим определитель, описывающий смешанное произведение векторов:
$\begin
При вычислении этого определителя получается общее уравнение плоскости, проходящей через три точки. Это можно увидеть, раскрыв определитель по первой строке:
$\begin
Уравнение плоскости, заданной 3 точками, через нормальный вектор и точку
Другим альтернативным методом задания плоскости является использование нормального вектора плоскости и точки, принадлежащей данной плоскости.
$[\vec
Данное произведение является нормальным вектором плоскости, для которой составляется уравнение. Полученные координаты нормального вектора можно использовать непосредственно для составления уравнения плоскости.
По сути, два вышеприведённых метода представляют одно и то же, так как в обоих необходимо найти координаты нормального вектора и затем, используя их и координаты третьей неиспользованной точки, получить уравнение самой плоскости.
К данной задаче можно также свести задачу с нахождением уравнения плоскости по уравнениям лежащих в ней параллельных и пересекающихся прямых.
Воспользуемся вторым способом и найдём координаты вектора через векторное произведение. Для этого сначала выразим координаты векторов:
Найдём их векторное произведение:
$0\cdot(x-4)+(-3) \cdot (y-2)+0 \cdot(z+1)=0$.
$-3y+6=0$ — искомое уравнение плоскости.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 14 03 2021
Задача C2: уравнение плоскости через определитель
В этом уроке мы рассмотрим, как с помощью определителя составить уравнение плоскости. Если вы не знаете, что такое определитель, зайдите в первую часть урока — «Матрицы и определители». Иначе вы рискуете ничего не понять в сегодняшнем материале.
Уравнение плоскости по трем точкам
Зачем вообще нужно уравнение плоскости? Все просто: зная его, мы легко высчитаем углы, расстояния и прочую хрень в задаче C2. В общем, без этого уравнения не обойтись. Поэтому сформулируем задачу:
Задача. В пространстве даны три точки, не лежащие на одной прямой. Их координаты:
Требуется составить уравнение плоскости, проходящей через эти три точки. Причем уравнение должно иметь вид:
Ну и как получить уравнение плоскости, если известны только координаты точек? Самый простой способ — подставить координаты в уравнение Получится система из трех уравнений, которая легко решается.
Многие ученики считают такое решение крайне утомительным и ненадежным. Прошлогодний ЕГЭ по математике показал, что вероятность допустить вычислительную ошибку действительно велика.
Поэтому наиболее продвинутые учителя стали искать более простые и изящные решения. И ведь нашли! Правда, полученный прием скорее относится к высшей математике. Лично мне пришлось перерыть весь Федеральный перечень учебников, чтобы убедиться, что мы вправе применять этот прием обоснований и доказательств.
Уравнение плоскости через определитель
Хватит лирики, приступаем к делу. Для начала — теорема о том, как связаны определитель матрицы и уравнение плоскости.
Теорема. Пусть даны координаты трех точек, через которые надо провести плоскость: Тогда уравнение этой плоскости можно записать через определитель:
Для примера попробуем найти пару плоскостей, которые реально встречаются в задачах С2. Взгляните, как быстро все считается:
Задача. Составьте уравнение плоскости, проходящей через точки:
Составляем определитель и приравниваем его к нулю:
a = 1 · 1 · ( z − 1) + 0 · 0 · x + (−1) · 1 · y = z − 1 − y;
b = (−1) · 1 · x + 0 · 1 · ( z − 1) + 1 · 0 · y = −x;
d = a − b = z − 1 − y − (− x ) = z − 1 − y + x = x − y + z − 1;
d = 0 ⇒ x − y + z − 1 = 0;
Как видите, при расчете числа d я немного «причесал» уравнение, чтобы переменные шли в правильной последовательности. Вот и все! Уравнение плоскости готово!
Задача. Составьте уравнение плоскости, проходящей через точки:
Сразу подставляем координаты точек в определитель:
Снова раскрываем определитель:
a = 1 · 1 · z + 0 · 1 · x + 1 · 0 · y = z;
b = 1 · 1 · x + 0 · 0 · z + 1 · 1 · y = x + y;
d = a − b = z − ( x + y ) = z − x − y;
d = 0 ⇒ z − x − y = 0 ⇒ x + y − z = 0;
Итак, уравнение плоскости снова получено! Опять же, на последнем шаге пришлось поменять в нем знаки, чтобы получить более «красивую» формулу. Делать это в настоящем решении совсем не обязательно, рекомендуется — чтобы упростить дальнейшее решение задачи.
Как видите, составлять уравнение плоскости теперь намного проще. Подставляем точки в матрицу, считаем определитель — и все, уравнение готово.
На этом можно было бы закончить урок. Однако многие ученики постоянно забывают, что стоит внутри определителя. Например, в какой строчке стоит а в какой — Чтобы окончательно разобраться с этим, давайте проследим, откуда берется каждое число.
Откуда берется формула с определителем?
Итак, разбираемся, откуда возникает такое суровое уравнение с определителем. Это поможет вам запомнить его и успешно применять.
Все плоскости, которые встречаются в задаче C2, задаются тремя точками. Эти точки всегда отмечены на чертеже, либо даже указаны прямо в тексте задачи. В любом случае, для составления уравнения нам потребуется выписать их координаты:
Рассмотрим еще одну точку на нашей плоскости с произвольными координатами:
Берем любую точку из первой тройки (например, и проведем из нее векторы в каждую из трех оставшихся точек. Получим три вектора:
Теперь составим из этих векторов квадратную матрицу и приравняем ее определитель к нулю. Координаты векторов станут строчками матрицы — и мы получим тот самый определитель, который указан в теореме:
Эта формула означает, что объем параллелепипеда, построенного на векторах равен нулю. Следовательно, все три вектора лежат в одной плоскости. В частности, и произвольная точка как раз то, что мы искали.
Замена точек и строк определителя
У определителей есть несколько замечательных свойств, которые еще более упрощают решение задачи C2. Например, нам неважно, из какой точки проводить векторы. Поэтому следующие определители дают такое же уравнение плоскости, как и приведенный выше:
Также можно менять местами строчки определителя. Уравнение при этом останется неизменным. Например, многие любят записывать строчку с координатами точки в самом верху. Пожалуйста, если вам так удобно:
Некоторых смущает, что в одной из строчек присутствуют переменные которые не исчезают при подстановке точек. Но они и не должны исчезать! Подставив числа в определитель, вы должны получить вот такую конструкцию:
Затем определитель раскрывается по схеме, приведенной в начале урока, и получается стандартное уравнение плоскости:
Взгляните на пример. Он последний в сегодняшнем уроке. Я специально поменяю строчки местами, чтобы убедиться, что в ответе получится одно и то же уравнение плоскости.
Задача. Составьте уравнение плоскости, проходящей через точки:
Итак, рассматриваем 4 точки:
Для начала составим стандартный определитель и приравниваем его к нулю:
a = 0 · 1 · ( z − 1) + 1 · 0 · ( x − 1) + (−1) · (−1) · y = 0 + 0 + y;
b = (−1) · 1 · ( x − 1) + 1 · (−1) · ( z − 1) + 0 · 0 · y = 1 − x + 1 − z = 2 − x − z;
d = a − b = y − (2 − x − z ) = y − 2 + x + z = x + y + z − 2;
d = 0 ⇒ x + y + z − 2 = 0;
Теперь давайте переставим пару строк в определителе и посмотрим, что произойдет. Например, запишем строчку с переменными не внизу, а вверху:
Вновь раскрываем полученный определитель:
a = ( x − 1) · 1 · (−1) + ( z − 1) · (−1) · 1 + y · 0 · 0 = 1 − x + 1 − z = 2 − x − z;
b = ( z − 1) · 1 · 0 + y · (−1) · (−1) + ( x − 1) · 1 · 0 = y;
d = a − b = 2 − x − z − y;
d = 0 ⇒ 2 − x − y − z = 0 ⇒ x + y + z − 2 = 0;
Мы получили точно такое же уравнение плоскости: Значит, оно действительно не зависит от порядка строк. Осталось записать ответ.
Итак, мы убедились, что уравнение плоскости не зависит от последовательности строк. Можно провести аналогичные вычисления и доказать, что уравнение плоскости не зависит и от точки, координаты которой мы вычитаем из остальных точек.
В рассмотренной выше задаче мы использовали точку но вполне можно было взять В общем, любую точку с известными координатами, лежащую на искомой плоскости.
5.2.2. Как составить уравнение плоскости по трём точкам?
Этот способ промелькнул в самом начале главы и уже громко стучится в дверь. Любые ли три точки пространства задают плоскость? Нет. Во-первых, точки должны быть различными. А во-вторых, они не должны лежать на одной прямой (сразу все три).
Уравнение плоскости, проходящей через три различные точки , которые не лежат на одной прямой, можно составить по формуле:
На самом деле это разновидность предыдущего способа, смотрим на картинку:
Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных этой плоскости:
То есть, наша формула фактически совпадает с формулой предыдущего параграф, и чтобы не уснуть от скуки, предлагаю раскрутить задачи-«шарады»:
Задача 132
Составить уравнение плоскости по точкам .
Решение: по соответствующей формуле:
Вот теперь и аналитически видно, что всё дело свелось к координатам двух векторов. Раскрываем определитель по первому столбцу и находим уравнение плоскости:
, больше ничего упростить нельзя, записываем:
Ответ:
Проверка напрашивается сама собой – в полученное уравнение плоскости нужно подставить координаты каждой точки. Если хотя бы одна из трёх точек «не подойдёт», ищите ошибку.
Для «мёртвого» зачёта всегда выполняйте проверку – мысленно, на черновике или прямо на чистовике. Не устану повторять этот вечно живой и актуальный призыв.
Задача 133
Составить уравнение плоскости, проходящей через точки и начало координат.
Выберите наиболее выгодный способ решения 😉