Главная » Правописание слов » Как пишется множество значений функции

Слово Как пишется множество значений функции - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Область значений функции (множество значений функции). Необходимые понятия и примеры нахождения

Зачастую в рамках решения задач нам приходится искать множество значений функции на области определения или отрезке. Например, это нужно делать при решении разных типов неравенств, оценках выражений и др.

В рамках этого материала мы расскажем, что из себя представляет область значений функции, приведем основные методы, которыми ее можно вычислить, и разберем задачи различной степени сложности. Для наглядности отдельные положения проиллюстрированы графиками. Прочитав эту статью, вы получите исчерпывающее представление об области значений функции.

Начнем с базовых определений.

Обратите внимание, что понятие множества значений функции не всегда тождественно области ее значений. Эти понятия будут равнозначны только в том случае, если интервал значений x при нахождении множества значений совпадет с областью определения функции.

Ниже приводится иллюстрация, на которой показаны некоторые примеры. Синие линии – это графики функций, красные – асимптоты, рыжие точки и линии на оси ординат – это области значений функции.

Рассмотрим основные способы нахождения области значений функции.

Возьмем задачу, в которой нужно определить область значений арксинуса.

Решение

Решение

Все, что нам нужно сделать, – это вычислить наибольшее и наименьшее значение функции в заданном интервале.

Для определения точек экстремума надо произвести следующие вычисления:

Начнем с определения наибольшей и наименьшей точки, а также промежутков возрастания и убывания на заданном интервале. После этого нам нужно будет вычислить односторонние пределы в концах интервала и/или пределы на бесконечности. Иными словами, нам надо определить поведении функции в заданных условиях. Для этого у нас есть все необходимые данные.

Решение

Определяем наибольшее и наименьшее значение функции на заданном отрезке

Решение

Решение

Мы получили, что значения функции будут возрастать от минус бесконечности до плюс бесконечности при изменении значений x от нуля до плюс бесконечности. Значит, множество всех действительных чисел – это и есть область значений функции натурального логарифма.

Ответ: множество всех действительных чисел – область значений функции натурального логарифма.

Решение

Данная функция является определенной при условии, что x – действительное число. Вычислим наибольшие и наименьшие значения функции, а также промежутки ее возрастания и убывания:

Посмотрим, как же ведет себя функция на бесконечности:

Из записи видно, что значения функции в этом случае будут асимптотически приближаться к 0.

На нем видно, что областью значений функции будет интервал E ( y ) = ( 0 ; 9 ]

Ответ: E ( y ) = ( 0 ; 9 ]

А как быть в случае, если область определения некоторой функции представляет из себя объединение нескольких промежутков? Тогда нам надо вычислить множества значений на каждом из этих промежутков и объединить их.

Решение

Для открытого луча 2 ; + ∞ производим точно такие же действия. Функция на нем также является убывающей:

Это можно увидеть на графике:

Особый случай – периодические функции. Их область значения совпадает с множеством значений на том промежутке, который отвечает периоду этой функции.

Решение

Синус относится к периодической функции, а его период составляет 2 пи. Берем отрезок 0 ; 2 π и смотрим, каким будет множество значений на нем.

Если вам нужно знать области значений таких функций, как степенная, показательная, логарифмическая, тригонометрическая, обратная тригонометрическая, то советуем вам перечитать статью об основных элементарных функциях. Теория, которую мы приводим здесь, позволяет проверить указанные там значения. Их желательно выучить, поскольку они часто требуются при решении задач. Если вы знаете области значений основных функций, то легко сможете находить области функций, которые получены из элементарных с помощью геометрического преобразования.

Решение

Еще один пример запишем без пояснений, т.к. он полностью аналогичен предыдущему.

Решение

Теперь разберем, как найти область значений функции, которая не является непрерывной. Для этого нам надо разбить всю область на промежутки и найти множества значений на каждом из них, после чего объединить то, что получилось. Чтобы лучше понять это, советуем повторить основные виды точек разрыва функции.

Решение

Решение показано на графике:

Решение

Она определена для всех значений аргумента, представляющих собой действительные числа. Определим, в каких промежутках данная функция будет возрастать, а в каких убывать:

Теперь найдем соответствующие значения функции:

Посмотрим на поведение функции на бесконечности:

Для вычисления второго предела было использовано правило Лопиталя. Изобразим ход нашего решения на графике.

Источник

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

Важные свойства

Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство. При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность. По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

Методы нахождения

Существует много способов нахождения области значений. Однако для решения задач нужно подбирать оптимальный метод, поскольку следует избегать лишних вычислений. Например, если функция является простой, то нет необходимости применять сложные алгоритмы решения. К методам нахождения относятся следующие:

Для каждого из методов существует определенный алгоритм. Хотя встречаются случаи, когда целесообразно применить два простых метода. Нужно руководствоваться минимальным количеством вычислений и затраченным временем.

Для каждого элемента

Иногда в задачах следует найти E (f) при условии, когда функция является сложной. Очень распространенная методика разбиения задачи на подзадачи, которая применяется не только в дисциплинах с физико-математическим уклоном, но в экономике, бизнесе и других направлениях. Решение с помощью метода последовательного нахождения E (f) каждой из функций. Алгоритм имеет такой вид:

Однако довольно сложно ориентировать по данному алгоритму, поскольку нужно разобрать решение примера с его помощью. Дана функция y = log0.5 (4 — 2 * 3^x — 9^x). Решается задача таким образом:

Необходимо обратить внимание на пункты 1, 3 и 5. Они являются очень важными, поскольку от них зависит правильность решения. Очень важно уметь анализировать полученную функцию в 4 пункте.

Оценочный способ

Еще одним методом определения E (f) является способ оценки. Необходимо оценить непрерывную функцию в нижнем и верхнем направлениях. Еще следует доказать достижение нижней и верхней границ. Для этой цели существует также алгоритм. Он немного проще предыдущего. Суть его заключается в следующем:

Необходимо разобрать алгоритм на примере функции y = cos (7x) + 5 * cos (x). Следует учитывать, что известен только один знак неравенства. Второй нужно доказать оценочным методом. Решение задачи имеет такой вид:

Производная, min и max

Одним из простейших способов нахождения E (f) является взятие производной функции. Этот метод можно комбинировать с определением максимального и минимального значений. Математики рекомендуют простейший алгоритм:

Практическое применение алгоритма — решение задачи этим методом. Например, нужно найти E (arcsin (x)). Решение выполняется по нескольким этапам:

В некоторых случаях рекомендуется вычислять пределы, поскольку часть задач решается только с их применением. Существует определенный тип задач, в которых нужно доказать, что отрезок является E (f) конкретной функции. Например, следует выяснить принадлежность [-1;1] функции sin (x). Для этого необходимо воспользоваться вышеописанным алгоритмом:

Отрезок [-1;1] является E (sin (x)). Оптимальный метод — нахождение производной и определение E (f). В этом примере необходимо знать и проверить периодичность.

Таким образом, существует несколько способов нахождения E (f), но всегда необходимо выбирать метод, приводящий к минимуму вычислений. Нет смысла усложнять решение, поскольку большинство алгоритмов направлены на оптимизацию вычислений.

Источник

Инструменты пользователя

Инструменты сайта

Боковая панель

Математика:

Контакты

Содержание

Нахождение множества значений функции

Обозначения

Способы нахождения областей значений функций.

Рассмотрим некоторые из них.

Используя производную

Общий подход к нахождению множества значений непрерывной функции f(x) заключается в нахождении наибольшего и наименьшего значения функции f(x) в области ее определения (или в доказательстве того, что одно из них или оба не существуют).

В случае, если нужно найти множества значений функции на отрезке:

Если областью определения функции является интервал, то используется та же схема, но вместо значений на концах используются пределы функции при стремлении аргумента к концам интервала. Значения пределов из не входят в множество значений.

Метод границ/оценок

Суть состоит в оценке непрерывной функции снизу и сверху и в доказательстве достижения функцией нижней и верхней границы оценок. При этом совпадение множества значений функции с промежутком от нижней границы оценки до верхней обуславливается непрерывностью функции и отсутствием у неё других значений.

Свойства непрерывной функции

Другой вариант заключается в преобразовании функции в непрерывную монотонную, тогда используя свойства неравенств оценивают множество значений вновь полученной функции.

Последовательное нахождение значений сложных аргументов функции

Основан на последовательном отыскании множества значений промежуточных функций, из которых составлена функция

Области значений основных элементарных функций

Функция Множество значений
$y = kx+ b$ E(y) = (-∞;+∞)
$y = x^<2n>$ E(y) = [0;+∞)
$y = x^<2n +1>$ E(y) = (-∞;+∞)
$y = k/x$ E(y) = (-∞;0)u(0;+∞)
$y = x^<\frac<1><2n>>$ E(y) = [0;+∞)
$y = x^<\frac<1><2n+1>>$ E(y) = (-∞;+∞)
$y = a^$ E(y) = (0;+∞)
$y = \log_$ E(y) = (-∞;+∞)
$y = \sin$ E(y) = [-1;1]
$y = \cos$ E(y) = [-1;1]
$y = <\rm tg>\, x$ E(y) = (-∞;+∞)
$y = <\rm ctg>\, x$ E(y) = (-∞;+∞)
$y = \arcsin$ E(y) = [-π/2; π/2]
$y = \arccos$ E(y) = [0; π]
$y = <\rm arctg>\, x$ E(y) = (-π/2; π/2)
$y = <\rm arcctg>\, x$ E(y) = (0; π)

Примеры

Найдите множество значений функции:

Используя производную

НЕ используя производную

Найдите наибольшее и наименьшее значения функции:

Если решать эту задачу с помощью производных, то потребуется преодолевать препятствия, связанные с тем, что функция f(x) определена не на отрезке, а на всей числовой прямой.

Используя метод границ/оценок

Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением на всей области определения, если таковые существуют.

Следовательно, E(y) = [-6;6].

Используя непрерывную функцию

Решим этот пример методом последовательного нахождения значений сложных аргументов функции. Выделив полный квадрат под логарифмом, преобразуем функцию

И последовательно найдём множества значений её сложных аргументов:

Используем прием, основанный на графическом изображении функции.

После преобразований функции, имеем: y 2 + x 2 = 25, причем y ≥ 0, |x| ≤ 5.

При этих ограничениях графиком данного уравнения является верхняя полуокружность с центром в начале координат и радиусом, равным 5. Очевидно, что E(y) = [0; 5].

Источник

Область значений функции

Время чтения: 40 минут

Область значений функции, ее свойства и примеры решения

В данном материалы мы подробно рассмотрим значение функции. Определим основные методы ее вычисления. Изучим множество значений функции.

Подробно, разберем на примерах, методы нахождения функции. Прежде, чем начать изучение материала, охарактеризуем основное определение значению функции.

Функции удобно изображать в виде графических прямых или кривых.

Понятие области определения функции

Функция задается тогда, когда любому значению, например x соответствует любое значение y. Независимой переменной называют значение х или по другому аргументом. Числовое значение y, как правило является зависимой переменной.

Данная зависимость между x и y в алгебре называют функциональной. Записывают ее в виде функции y = f(x)

Другими словами, функция, это когда значения одной переменной зависят от значений другой переменной.

Далее можно сформулировать определение область функции. То есть, на какой промежуток действе функции распространяется.

Область функции можно выразить геометрически. Например, в виде графика. Где за основу берутся оси х и y.

Например:

Область значений функции y = z 2 — это все значения, которые будут больше либо равные нулю. В виде записи это выглядит следующим образом: f(у): у ≥ 0. Не все функции обозначаются одинаковыми формулировками, в основном D(f). Но тригонометрические функции обозначаются немного иначе. D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус. Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = x. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) = [-1, 1]. Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Для указания множества чисел в определенном промежутке, необходимо выполнить следующие действия:

Если у промежутка нет правой границы, записываем знак бесконечности или плюс бесконечности. Если отсутствует левая граница, записываем знак минус бесконечности.

В случае, если записывается множество, которое состоит из нескольких промежутков, ставится знак объединение.

Рассмотрим на примерах

Все действительные числа от 1 до 9, можно выразить в следующей записи. [1;9]

Все положительные числовые значения, имеют следующий вид: (0; +);

Так как ноль, не является положительным число, то возле него ставится круглая скобка.

Область значения и определения функции

Чаще всего область определения выражают как функцию D(y).

В математике существует две главных запрещенных (недопустимых) операции:

При определении области функции, вступают в силу два основных ограничения:

Область определения постоянной функции

Постоянная функция записывается обычной формулой y = N, а именно f(x) = N, где N — любое действительное число. Иными словами, принято называть константа.

Постоянная функция — это функция, при которой всегда наблюдается одно и то же числовое значение, независимо от того какое числовое значения имеет аргумент.

Область определения степенной функции

Область определения степенной функции, всегда имеет непосредственную зависимость, от значений показателя степени.

Рассмотрим основные моменты:

Если k — неотрицательное целое число, то областью определения данной функции является множество любых, обязательно, действительных чисел: (-∞, +∞).

Когда степенной показатель, является не целое число, то функция имеет следующий вид D(f) = [0, +∞).

Когда k — отрицательное целое число, то область определения функции представляет собой (-∞, 0) ∪ (0, +∞).

Для остальных действительных отрицательных, a область определения степенной функции — числовой промежуток (0, +∞).

Если k равно нулю, то функция определена для всех чисел, кроме нуля. Так как ноль нельзя возвести в степень, а любое другое число в нулевой степени равно 1.

То есть, при k = 0, y =x0 = 1, на заданной области определения (-∞, 0) ∪ (0, +∞).

Область определения показательной функции

Показательная функция записывается как: y=k x

где значение x — показатель степени;

k — число, которое обязательно больше нуля и не равно единице.

Область определения показательной функции — это множество значений R.

Основные примеры показательных функций:

Область определения, для этих функций, записывается следующим образом: (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выражается как: y=log n k

Рассмотрим на примере, характер решения задачи данной функции.

Пример №1

y=ln x, определить область определения натурального логарифма. D(y)=(0;+).

На заданном интервале, производная будет иметь положительное значение, и функция будет возрастать на всем промежутке.

Определим односторонний предел при, стремлении аргумента к нулю и когда значение x стремится к бесконечности.

Из данного решения мы видим, что значения будут возрастать от минус бесконечности до плюс бесконечности.

Из этого следует, что множество всех действительных чисел – является областью значений функции натурального логарифма ln.

Ответ: множество всех действительных чисел, это и есть область значений функции ln.

Область определения и множество значений функций косинус, синус, тангенс, котангенс

Множество значений всех действительных чисел, будет являться областью определения функций синус и косинус, и записываться следующим образом.

Функции являются ограниченными, как сверху, так и снизу.

y = sin x и y = cos x

Промежуток их действия сводится к неравенству -1 ≤ y ≤ 1

Областью определения функции тангенс tg x, является выражение .

Областью определения функции y = сtg x является множество чисел .

На нижеприведенных примерах подробно расписано решение задач, при определении области функции, при заданных промежутках значений.

Пример №1

Определить область значения функции sin x

Данный вид функции относится к категории периодической. Ее период равняется

Определяем множество значений на следующем отрезке: (0;2π).

Пример №2

Необходимо определить область значения функции cos x.

Наименьшее значение равно -1;

Минимальное значение косинуса равняется -1, потому что наименьшее значение х, на окружности стремится к этому значению и, следовательно, равняется -1.

Максимальное значение косинуса будет соответственно 1. Поскольку значение на окружности х имеет число 1.

Область значение, следовательно, будет от минус одно до плюс одного. [-1;1].

Применяем двойное неравенство и записывает следующее выражение:

Область значения косинуса никогда не зависит от аргумента, только если сам аргумент выражен в виде сложного выражения. Где имеют место ограничения касающиеся области определения и области значения.

Таким образом, минимальное значение cos x, cos (15α), cos(5-11x) и так далее, будет однозначно равняться -1;

Самым максимальным значением cos x, cos(4φ), cos(5х+3) равняется 1.

Область значений функции y=cos x — также промежуток [-1;1].

Область значения квадрата косинуса, будет промежуток от нуля до единицы [0;1]. Потому что число в четной степени, является не отрицательным.

Аналогичным образом находим область значений модуля косинуса — промежуток [0;1]

Пример №3

y = tgx на определенном интервале .

Решение:

Из правил алгебры, известно, что производная тангенса имеет положительное значение. Соответственно функция будет иметь возрастающую характеристику.

Далее необходимо определить поведение функции, в заданных пределах.

Выполнив решение, мы получаем рост значений от минус до плюс бесконечности. Решение будет сводится к следующему: множество решение заданной функции, будет множество всех действий функции.

Пример №4

на определенном интервале (-1;1).

Решение:

Для всех значений x производная будет положительной, в пределах от -1;1

Следовательно, область значения арксинуса равняется:

Пример №5

Разберем функцию 2sinx2-4, где значение х меньше либо равно значению 3. Необходимо вычислить область значений.

, где x > 3

Функция является для всех значений x определенной.

Наблюдаем недопустимый вид при значении аргумента − 3.

При приближении к данному аргументу функция стремится к . При стремлении x к − 3 с правой стороны значения будут стремиться к − 1.

Наблюдается разрыв в точке 3. Когда функция стремится к данному разрыву ее числовые значения приближаются к -1. Минус бесконечность будет наблюдаться при стремлении к такой точке, но только с правой стороны.

Из этого следует вся область значений данной функции разбивается на три интервала. (-;−3], (−3 ;3], (3;+)(-;-3], (-3; 3], (3;+).

Первый интервал имеет функцию, следующего вида . Так как синус должен быть, меньше либо равен 1, или больше либо равен -1. Получаем следующие выражения:

из этого следует

На промежутке -∞;-3, функция имеет следующие значения [-6;-2].

Функция y=-1, получается на полуинтервале (−3;3]. Следовательно, все значения будут сводится на данном интервале к одному числу, а именно -1.

Проанализируем второй промежуток (3;-+∞). Так как функция меньше нуля, она будет убывающей . Промежуток ее убывания будет от плюс бесконечности до нуля, однако значение ноль она не достигнет.

Если значение x больше значения 3, то большинство множеств функции будет в промежутке от нуля до +∞.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как пишется множество значений функции, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как пишется множество значений функции", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как пишется множество значений функции:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *