Значение слова «ртуть»
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
РТУТЬ, и, мн. нет, ж. Химический элемент, металл серебристо-белого цвета, жидкий при обычной температуре.
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
ртуть
1. обычно <<ед.>> хим. химический элемент с атомным номером 80, обозначается химическим символом Hg ◆ Пары ртути. ◆ Использование ртути в хозяйстве. ◆ Вдруг мне пришло в голову, что в нашем городе есть обычай при поисках утопленников бросать в воду караваи хлеба со вставленными внутрь стаканчиками ртути, потому что такой каравай непременно остановится над мёртвым телом. М. Твен, «Приключения Гекльберри Финна», 1884 г.
Фразеологизмы и устойчивые сочетания
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: отрада — это что-то нейтральное, положительное или отрицательное?
Ассоциации к слову «ртуть»
Синонимы к слову «ртуть»
Предложения со словом «ртуть»
Цитаты из русской классики со словом «ртуть»
Сочетаемость слова «ртуть»
Какой бывает «ртуть»
Понятия со словом «ртуть»
Отправить комментарий
Дополнительно
Предложения со словом «ртуть»
Серебро высоких волн разбивалось о валуны, оставляя на их гладких боках капли ртути.
Согласно теории первичного бульона, впоследствии эти аминокислоты стали соединяться, приблизительно так же, как соединяются шарики ртути, пока, через много миллионов лет, не образовали первую живую клетку.
В качестве источника света также используют пары ртути, которые дают приятное голубовато-зеленое освещение, рекомендуемое для подчёркивания силуэтов хвойных пород деревьев.
ртуть
Полезное
Смотреть что такое «ртуть» в других словарях:
ртуть — ртуть, и … Русский орфографический словарь
ртуть — ртуть/ … Морфемно-орфографический словарь
ртуть — и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный). ◊ Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка. * * * ртуть… … Энциклопедический словарь
РТУТЬ — РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия
РТУТЬ — см. РТУТЬ (Hg) содержится в сточных водах химических заводов по производству красок, хлора и каустической соды, фармацевтических препаратов, взрывчатых веществ, приборостроительных и электротехнических предприятий, горнодобывающих и целлюлозно… … Болезни рыб: Справочник
Ртуть — является единственным металлом, который при комнатной температуре находится в жидком состоянии. Ее получают путем обжига природного сульфида ртути (киновари) и отделяют от других металлов, содержащихся в руде (свинец, цинк, олово, висмут), путем… … Официальная терминология
РТУТЬ — (символ Hg), жидкий металлический химический элемент, известный с давних времен. Основной рудой ртути является киноварь (сульфид), из которого ртуть получается посредством обжига. Этот серебристый элемент является единственным металлом, имеющим… … Научно-технический энциклопедический словарь
РТУТЬ — (лат. Hydrargyrum) Hg, химический элемент II группы периодической системы, атомный номер 80, атомная масса 200,59. Серебристый жидкий металл (отсюда латинское название; от греч. hydor вода и argyros серебро). Плотность 13,5 г/м² (тяжелее всех … Большой Энциклопедический словарь
РТУТЬ — (Hydrargyrum), Hg, химический элемент II группы периодической системы, атомный номер 80, атомная масса 200,59; единственный из металлов жидкий при комнатной температуре, температура плавления 38,87 шC, температура кипения 356,58 шC, очень летуча … Современная энциклопедия
Ртуть — Hg (лат. hydrargyrum, от греч. hydor вода и argyros серебро * a. mercury; н. Quecksilber; ф. mercure; и. mercurio), хим. элемент II группы периодич. системы Менделеева, ат. н. 80, ат. м. 200,59. В природе 7 стабильных изотопов: 196Нg… … Геологическая энциклопедия
Ртуть
Ртуть / Hydrargyrum (Hg), 80
[Xe] 4f 14 5d 10 6s 2
Ртуть — элемент побочной подгруппы второй группы шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum ). Простое вещество ртуть (CAS-номер: 7439-97-6) — переходный металл, при комнатной температуре представляет собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты. Ртуть — один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент — бром).
Содержание
История
Ртуть известна с древних времен. Нередко ее находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и ее соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий.
Происхождение названия
Нахождение в природе
Ртуть — относительно редкий элемент в Земной коре со средней концентрацией 83 мг/т. Однако в виду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе — рассеянная и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.
Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути — тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).
Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.
В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда — шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb4S7. В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся прежде всего самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg2Cl2. На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения — терлингуаит Hg2ClO, эглестонит Hg4Cl.
Месторождения
Ртуть считается редким металлом.
Известны месторождения ртути в Закавказье (Дагестан, Армения), Таджикистане, Словении, Киргизии, Украине (Горловка, Никитовский ртутный комбинат).
В окружающей среде
До индустриальной революции осаждение ртути из атмосферы составляло около 4 нанограмма на литр льда. Природные источники, такие как вулканы, составляют примерно половину всех выбросов атмосферной ртути. За оставшуюся половину ответственна деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля главным образом в тепловых электростанциях — 65 %, добыча золота — 11 %, выплавка цветных металлов — 6,8 %, производство цемента — 6,4 %, утилизация мусора — 3 %, производство соды — 3 %, чугуна и стали — 1,4 %, ртути (в основном для батареек) — 1,1 %, остальное — 2 %.
Одно из тяжелейших загрязнений ртутью в истории случилось в японском городе Минамата в 1956 году, что привело к более чем трём тысячам жертв, которые либо умерли, либо сильно пострадали от болезни Минамата.
Изотопы ртути
Изотоп | 196 | 198 | 199 | 200 | 201 | 202 | 204 |
---|---|---|---|---|---|---|---|
Концентрация, (%) | 0,146 | 10,02 | 16,84 | 23,13 | 13,22 | 29,80 | 6,85 |
Получение
Ртуть получают обжигом киновари (cульфида ртути(II)): Уравнение реакции:
Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.
В России известны 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год).
Физические свойства
Температура в °С | ρ, 10 3 кг/м 3 | Температура в °С | ρ, 10 3 кг/м 3 |
0 | 13,5951 | 50 | 13,4723 |
5 | 13,5827 | 55 | 13,4601 |
10 | 13,5704 | 60 | 13,4480 |
15 | 13,5580 | 65 | 13,4358 |
20 | 13,5457 | 70 | 13,4237 |
25 | 13,5335 | 75 | 13,4116 |
30 | 13,5212 | 80 | 13,3995 |
35 | 13,5090 | 90 | 13,3753 |
40 | 13,4967 | 100 | 13,3514 |
45 | 13,4845 | 300 | 12,875 |
Химические свойства
Характерные степени окисления
Степень окисления | Оксид | Гидроксид | Характер | Примечания |
---|---|---|---|---|
+1 | Не получен | * | Слабоосновный | Склонность к диспропорционированию |
+2 | HgO | ** | Очень слабое основание, иногда — амфотерный |
‘*Гидроксид не получен, существуют только соответствующие соли
‘**Гидроксид существует только в очень разбавленных ( −4 моль/л) растворах.
Для ртути характерны две степени окисления: +1 и +2. В степени окисления +1 ртуть представляет собой двухъядерный катион Hg2 2+ со связью металл-металл. Ртуть — один из немногих металлов, способных формировать такие катионы, и у ртути они — самые устойчивые.
В степени окисления +1 ртуть склонна к диспропорционированию. Оно протекает при нагревании:
добавлении лигандов, стабилизирующих степень окисления ртути +2.
Из-за диспропорционирования ни оксид, ни гидроксид ртути (I) получить не удаётся.
На холоду ртуть +2 и металлическая ртуть, наоборот, конпропорционируют. Поэтому, в частности, при реакции нитрата ртути (II) со ртутью получается нитрат ртути (I):
В очень концентрированной щелочи оксид ртути частично растворяется с образованием гидроксокомплекса:
Ртуть в степени окисления +2 образует уникально прочные комплексы со многими лигандами, причём как жесткими, так и мягкими по теории ЖМКО. С иодом (-1), серой (-2) и углеродом она образует очень прочные ковалентные связи. По устойчивости связей металл-углерод ртути нет равных среди других металлов, поэтому получено огромное количество ртутьорганических соединений.
Свойства простого вещества [8]
Ртуть — малоактивный металл (см. ряд напряжений). Она не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке:
Также с трудом растворяется в серной кислоте при нагревании, с образованием сульфата ртути:
При растворении избытка ртути в азотной кислоте на холоде образуется нитрат Hg2(NO3)2.
При нагревании до 300 °C ртуть вступает в реакцию с кислородом:
При этом образуется оксид ртути(II) красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ.
340^\circ C> 2Hg+O_2\uparrow>» border=»0″/>
Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.
При нагревании ртути с серой образуется сульфид ртути(II):
Ртуть также реагирует с галогенами (причём на холоду — медленно).
Ртуть можно окислить также щелочным раствором перманганата калия:
и различными хлорсодержащими отбеливателями. Эти реакции используют для удаления металлической ртути.
Применение
Применение ртути и её соединений
Медицина
Амальгаму серебра применяют в стоматологии в качестве материала зубных пломб.
Ртуть-203 (T1/2 = 53 сек) используется в радиофармакологии.
Техника
Металлургия
Химическая промышленность
Сельское хозяйство
Высокотоксичные соединения ртути, такие как хлорид ртути(I) (каломель), хлорид ртути (II) (сулема), мертиолят и другие используют для протравливания семенного зерна и в качестве пестицидов.
Токсикология ртути
Ядовиты только пары́ и растворимые соединения ртути. Металлическая ртуть не оказывает существенного воздействия на организм. Пары могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании — дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной метилртути. Ртуть — типичный представитель кумулятивных ядов.
Гигиеническое нормирование концентраций ртути
Демеркуризация
Очистка помещений и предметов от загрязнений металлической ртутью и источников ртутных паров называется демеркуризацией. В быту широко применяется демеркуризация с помощью серы. Так, например, если разбился градусник, раньше предлагали тщательно собрать все шарики ртути медицинской клизмой в стеклянную банку с герметичной крышкой, а щели и неровности засыпать порошком серы (S). Сера вступает в химическую реакцию со ртутью при комнатной температуре, образуя нерастворимое и потому не ядовитое твердое вещество — сульфид ртути. Однако этот метод исключительно малоэффективен. Сера со ртутью легко реагирует только при тщательном растирании в ступке. Если насыпать на тяжелую ртуть легкий порошок серы, реакция практически не будет идти. Или пойдет чрезвычайно медленно. На самом деле следует тщательнейшим образом собрать все видимые (при ярком свете лампы!) капельки ртути в герметично закрывающуюся емкость. Для сбора крупных капель можно использовать пипетку с тонким носиком, а более мелкие капли нужно собрать амальгамированной (покрытой тончайшим слоем ртути) медной проволокой, которую нужно перед этим тщательно зачистить, чтобы ртуть смочила медь (лучше всего для этой цели подходит азотная кислота, в которую нужно на одну — две секунды опустить конец проволоки). Подойдет и оловянный припой. Налипшую ртуть следует стряхивать в ту же емкость, которую потом нужно сдать на утилизацию — туда же, куда сдают перегоревшие люминесцентные и энергосберегающие лампы, которые тоже содержат ртуть. Невидимые глазом, а также попавшие в щели капельки следует залить раствором хлорного железа FeCl3, который превратит ртуть в неиспаряющуюся и малоядовитую каломель Hg2Cl2. В крайнем случае следует залить это место раствором «марганцовки» или йодной настойкой. Пол на следующий день нужно тщательно вымыть. Ни в коем случае нельзя убирать частицы ртути при помощи пылесоса, так как это вызывает рассеивание на более мелкие частицы через выход воздуха из пылесоса, а это повлечет за собой увеличение концентрации паров ртути и усложнит процесс очистки помещений.
Введение
История
Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др.
Ртуть – вещество первого класса опасности. Является переходным металлом, представляющим собой серебристо-белую жидкость с тяжелой массой, пары которой очень ядовиты (в условиях привычной температуры жилых помещений).
Химические свойства
Для ртути характерны две степени окисления: +1 и +2. В степени окисления +1 ртуть представляет собой двухъядерный катион Hg 22+ со связью металл-металл. Ртуть – один из немногих металлов, способных формировать такие катионы, и у ртути они – самые устойчивые.
В степени окисления +1 ртуть склонна к диспропорционированию. Оно протекает при нагревании и под щ елачивании.
добавлении лигандов, стабилизирующих степень окисления ртути +2.
Из-за диспропорционирования и гидролиза гидроксид ртути ( I ) получить не удаётся.
На холоде ртуть +2 и металлическая ртуть, наоборот, сопропорционируют. Поэтому, в частности, при реакции нитрата ртути ( II ) со ртутью получается нитрат ртути ( I ).
В очень концентрированной щелочи оксид ртути частично растворяется с образованием гидроксокомплекса
Ртуть в степени окисления +2 образует уникально прочные комплексы со многими лигандами, причём как жёсткими, так и мягкими по теории ЖМКО. С йодом (-1), серой (-2) и углеродом она образует очень прочные ковалентные связи. По устойчивости связей металл-углерод ртути нет равных среди других металлов, поэтому получено огромное количество ртутьорганических соединений.
Из элементов II Б группы именно у ртути появляется возможность разрушения очень устойчивой 6 d 10 – электронной оболочки, что приводит к возможности существования соединений ртути( IV ), но они крайне малоустойчивы, поэтому эту степень окисления скорее можно отнести к курьёзной, чем к характерной. В частности, при взаимодействии атомов ртути и смеси неона и фтора при температуре 4К получен HgF 4.
Физические свойства
Плотность ртути при нормальных условиях – 13 500 кг/м3.
Таблица 1 – Зависимость плотности от температуры
Получение
Ртуть получают путём восстановления из её наиболее распространённого минерала – киновари.
Пары ртути конденсируют и собирают. Этот способ применяли ещё алхимики древности.
На протяжении многих столетий в Европе основным и единственным месторождением ртути был Альмаден в Испании. В Новое время с ним стала конкурировать Идрия вовладениях Габсбургов (современная Словения). Там же появилась первая лечебница для поражённых отравлением парами ртути рудокопов. В 2012 г. ЮНЕСКО объявило промышленную инфраструктуру Альмдена и Идрии памятником Всемирного наследия человечества.
В надписях во дворце древнеперсидских царей Ахеменидов ( VI – IV века до н. э.) в Сузах упоминается, что ртутную киноварь доставляли сюда с Зеравшанских гор и использовали в качестве краски.
Нахождение в природе
Ртуть – относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе – рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути – 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.
Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути – тиманит ( HgSe ) и онофрит (смесь тиманита и сфалерита).
Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.
Применение ртути и её соединений
Медицина
В связи с высокой токсичностью ртуть почти полностью вытеснена из медицинских препаратов. Её соединения (в частности, мертиолят) иногда используются в малых количествах как консервант для вакцин. Сама ртуть сохраняется в ртутных медицинских термометрах (один медицинский термометр содержит до 2 г ртути).
Однако вплоть до 1970-х годов соединения ртути использовались в медицине очень активно:
● хлорид ртути ( I ) (каломель) – слабительное;
● меркузал и промеран – сильные мочегонные;
● хлорид ртути ( II ), цианид ртути ( II ), амидохлорид ртути и жёлтый оксид ртути( II ) – антисептики (в том числе в составе мазей).
Известны случаи, когда при завороте кишок больному вливали в желудок стакан ртути. По мнению древних врачевателей, предлагавших такой метод лечения, ртуть благодаря своей тяжести и подвижности должна была пройти по кишечнику и под своим весом расправить его перекрутившиеся части.
Амальгаму серебра применяли в стоматологии в качестве материала зубных пломб до появления светоотверждаемых материалов.
Ртуть-203 ( T 1/2 = 53 сек) используется в радиофармакологии.
Техника
● Ртуть используется как рабочее тело в ртутных термометрах (особенно высокоточных), так как (а) обладает довольно широким диапазоном, в котором находится в жидком состоянии, (б) её коэффициент термического расширения почти не зависит от температуры и (в) обладает сравнительно малой теплоёмкостью. Сплав ртути с таллием используется для низкотемпературных термометров.
● Парами ртути заполняют люминесцентные лампы, поскольку пары светятся в тлеющем разряде. В спектре испускания паров ртути много ультрафиолетового света и, чтобы преобразовать его в видимый, стекло люминесцентных ламп изнутри покрывают люминофором. Без люминофора ртутные лампы являются источником жесткого ультрафиолета (254 нм), в каковом качестве и используются. Такие лампы делают из кварцевого стекла, пропускающего ультрафиолет, поэтому они называются кварцевыми.
● Ртутные электрические вентили (игнитроны) в мощных выпрямительных устройствах, электроприводах, электросварочных устройствах, тяговых и выпрямительных подстанциях и т. п. [18] со средней силой тока в сотни ампер и выпрямленным напряжением до 5 кВ.
● Ртуть и сплавы на её основе используются в герметичных выключателях, включающихся при определённом положении.
● Ртуть используется в датчиках положения.
● В некоторых химических источниках тока (например, ртутно-цинковых), в эталонных источниках напряжения (Нормальный элемент Вестона).
● Ртуть также иногда применяется в качестве рабочего тела в тяжелонагруженных гидродинамических подшипниках.
● Ртуть ранее входила в состав некоторых биоцидных красок для предотвращения обрастания корпуса судов в морской воде. Сейчас запрещается использовать такого типа покрытия.
● Иодид ртути( I ) используется как полупроводниковый детектор радиоактивного излучения.
● Фульминат ртути( II ) («гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).
● Бромид ртути( I ) применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).
● Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.
● До середины 20 века ртуть широко применялась в барометрах и манометрах.
● Ртутные вакуумные насосы были основными источниками вакуума в 19 и начале 20 веков.
● Ранее ртуть использовали для золочения поверхностей методом амальгамирования, однако в настоящее время от этого метода отказались из-за токсичности ртути.
● Соединения ртути использовались в шляпном производстве для выделки фетра.
Металлургия
● Металлическая ртуть применяется для получения целого ряда важнейших сплавов.
● Ранее различные амальгамы металлов, особенно золота и серебра, широко использовались в ювелирном деле, в производстве зеркал.
● Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей. Сейчас вместо ртутных катодов используют электролиз с диафрагмой.
● Ртуть используется для переработки вторичного алюминия (см. амальгамация)
● Ртуть хорошо смачивает золото, поэтому ей обрабатывают золотоносные глины для выделения из них этого металла. Эта технология распространена, в частности, в Амазонии.
Химическая промышленность
● Соли ртути использовали в качестве катализатора промышленного получения ацетальдегида из ацетилена (реакция Кучерова), однако в настоящее время ацетальдегид получают прямым каталитическим окислением этана или этена.
● Реактив Несслера используется для количественного определения аммиака.
Сельское хозяйство
Высокотоксичные соединения ртути – каломель, сулему, мертиолят и другие – используют для протравливания семенного зерна и в качестве пестицидов.
Заключение
Запрет использования ртутьсодержащей продукции
С 2020 года международная конвенция, названная в честь массового отравления ртутью и подписанная многими странами, запретит производство, экспорт и импорт нескольких различных видов ртутьсодержащих продукции применяемой в быту, в том числе электрических батарей, электрических выключателей и реле, некоторых видов компактных люминесцентных ламп (КЛЛ), люминесцентных ламп с холодным катодом или с внешним электродом, ртутных термометров и приборов измерения давлении. Конвенция вводит регулирование использования ртути и ограничивает ряд промышленных процессов и отраслей, в том числе горнодобывающую (особенно непромышленную добычу золота), производство цемента.
Демеркуризация
Очистка помещений и предметов от загрязнений металлической ртутью и источников ртутных паров называется демеркуризацией. В быту широко применяется демеркуризация с помощью серы и хлорного железа FeCl 3.
Гигиеническое нормирование концентраций ртути
Предельно допустимые уровни загрязнённости металлической ртутью и её парами:
● ПДК в населённых пунктах (среднесуточная) – 0,0003 мг / м³
● ПДК в жилых помещениях (среднесуточная) – 0,0003 мг/м³
● ПДК воздуха в рабочей зоне (макс. разовая) – 0,01 мг/м³
● ПДК воздуха в рабочей зоне (среднесменная) – 0,005 мг/м³
● ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) – 0,005 мг/ л
● ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоёмов – 0,0005 мг/л