Структура сульфида серебра (Ag2S), свойства, номенклатура, применение
Серебряные украшения имеют тенденцию темнеть, теряя свой характерный блеск. Изменение цвета является не продуктом окисления серебра, а его реакции с сероводородом, присутствующим в окружающей среде при низких концентрациях; Это может происходить из-за гниения или деградации растений, животных или продуктов, богатых серой..
H2S, чья молекула несет атом серы, реагирует с серебром в соответствии со следующим химическим уравнением: 2Ag (s) + H2S (g) => Ag2S (s) + H2(G)
Следовательно, Ag2S отвечает за черные слои, сформированные на серебре. Однако в природе эту серу также можно найти в минералах acantita и argentita. Эти два минерала отличаются от многих других своими черными и яркими кристаллами, как у твердого вещества на верхнем изображении..
Ag2S представляет полиморфные структуры, привлекательные электронные и оптоэлектронные свойства, является полупроводниковым и обещает стать материалом для разработки фотоэлектрических устройств, таких как солнечные элементы.
структура
Как? Через фазовый переход. Ионы переставляются таким образом, что повышение температуры и колебания твердого тела не нарушают электростатического равновесия притяжения-отталкивания. Когда это происходит, говорят, что существует фазовый переход, и поэтому твердое тело проявляет новые физические свойства (такие как блеск и цвет)..
Ag2S при нормальной температуре (ниже 179ºC), он имеет моноклинную кристаллическую структуру (α-Ag2S). Помимо этой твердой фазы есть еще две: ОЦК (кубический с центром в теле) между 179 и 586ºC, и ГЦК (кубический с центром на гранях) при очень высоких температурах (δ-Ag2S).
Минерал аргентита состоит из ГЦК-фазы, также известной как β-Ag2S. После охлаждения и превращения в скалы, их структурные особенности преобладают вместе. Следовательно, обе кристаллические структуры сосуществуют: моноклинная и ОЦК. Следовательно, черные тела с яркими и интересными оттенками появляются.
свойства
Молекулярный вес
внешний вид
запах
Точка плавления
836ºC. Эта величина согласуется с тем, что Ag2S представляет собой соединение с небольшим ионным характером и, следовательно, плавится при температуре ниже 1000ºC.
растворимость
Кроме того, Ag2S нерастворим во всех растворителях. Ни одна молекула не может эффективно отделить свои кристаллические слои от ионов Ag + и S 2- сольватирован.
структура
На изображении структуры также видны четыре слоя связей S-Ag-S, которые движутся друг над другом, когда твердое тело подвергается пониманию. Такое поведение означает, что, несмотря на то, что он является полупроводником, он пластичен, как и многие металлы при комнатной температуре..
Слои S-Ag-S подходят правильно из-за их угловой геометрии, которые наблюдаются как зигзаг. Обладая силой понимания, они движутся по оси смещения, вызывая новые нековалентные взаимодействия между атомами серебра и серы..
Показатель преломления
Диэлектрическая проницаемость
электронный
Редукционная реакция
Ag2S можно уменьшить до металлического серебра, облив черные кусочки горячей водой, NaOH, алюминием и солью. Происходит следующая реакция:
номенклатура
Так что Ag2S следует называть в соответствии со следующими номенклатурами:
Систематика
обезьянасульфид дисеребро. Здесь мы рассмотрим количество атомов каждого элемента и обозначены префиксами греческих числителей.
акции
Сульфид серебра. При уникальной валентности +1 она не указывается римскими цифрами в скобках: сульфид серебра (I); что неверно.
традиционный
приложений
Некоторые из новых применений Ag2S следующие:
-Растворы окраски их наночастиц (с различными размерами), обладают антибактериальной активностью, не токсичны, и, следовательно, могут быть использованы в областях медицины и биологии.
-Их наночастицы могут образовывать так называемые квантовые точки. Они поглощают и испускают излучение с большей интенсивностью, чем многие органические флуоресцентные молекулы, поэтому они могут вытеснить последние в качестве биологических маркеров.
-Структуры α-Ag2S заставляют его проявлять поразительные электронные свойства для использования в качестве солнечных элементов. Он также представляет собой отправную точку для синтеза новых термоэлектрических материалов и датчиков.
Сульфид серебра
твёрдое вещество серо-черного цвета
176,3 °C (α → β)
592 °C (β → γ)
Сульфи́д серебра́(I) — неорганическое вещество с химической формулой Ag2S, принадлежащее к классу бинарных соединений, также может рассматриваться как соль серебра и сероводородной кислоты.
Содержание
Нахождение в природе
Сульфид серебра в природе встречается в виде минералов акантита, аргентита и маккинстриита. Основные свойства этих минералов представлены в таблице.
Физические свойства
Ag2S существует в трёх кристаллических модификациях:
Температуры фазовых переходов α→β 176,3 °C, β→γ 592 °C. Сульфид серебра склонен к образованию нестехиометрических соединений Ag2Sx, где x=
1, свойства которых могут сильно отличаться от стехиометрических.
Химические свойства
Переведение в раствор
Сульфид серебра не реагирует с кислотами при комнатной температуре.
Восстановление серебра
Следующие реакции сульфида серебра приводят к восстановлению металлического серебра:
Восстановление с помощью алюминия в концентрированном горячем растворе щёлочи:
Получение
Сульфид серебра может быть получен следующими способами:
Применение
Токсичность
При попадании в глаза вызывает раздражение. При длительном контакте с кожей может вызывать аргирию.
Токсично для рыб: править] Примечания
Сульфид серебра I
Сульфид серебра I (серебро сернистое) — неорганическое вещество с химической формулой Ag2S, принадлежащее к классу бинарных соединений, также может рассматриваться как соль серебра и сероводородной кислоты.
Содержание
Нахождение в природе
Сульфид серебра в природе встречается в виде минералов акантита, аргентита и маккинстриита. Основные свойства этих минералов представлены в таблице.
Физические свойства
Сульфид серебра — твёрдое вещество серо-чёрного цвета, является наименее растворимым в воде соединением серебра, в очень тонких плёнках придает металлическому серебру розоватую окраску. Нерастворим в этаноле.
Ag2S существует в трёх кристаллических модификациях:
Химические свойства
Переведение в раствор
Сульфид серебра не реагирует с кислотами при комнатной температуре.
Восстановление серебра
Следующие реакции сульфида серебра приводят к восстановлению металлического серебра:
Восстановление с помощью алюминия в концентрированном горячем растворе щёлочи:
Получение
Сульфид серебра может быть получен следующими способами:
Применение
Руды, содержащие сульфид серебра, являются одним из видов сырья для промышленного получения металлического серебра. Чистый сульфид серебра применяется как компонент твёрдых электролитов, полупроводниковых материалов.
Сульфид серебра используется в качестве катализатора в некоторых реакциях, например, для получения политиазила.
Токсичность
При попадании в глаза вызывает раздражение. При длительном контакте с кожей может вызывать аргирию.
Токсично для рыб: LD50 для Pimephales promelas составляет 13 мг/л в течение 96 ч.
Сульфид серебра (Ag2S): структура, свойства и применение
Содержание:
Серебряные украшения имеют свойство темнеть, теряя свой характерный блеск. Изменение цвета является продуктом не окисления серебра, а его реакции с сероводородом, присутствующим в окружающей среде в низких концентрациях; Это может происходить из-за гниения или разложения растений, животных или продуктов, богатых серой.
H2S, молекула которого содержит атом серы, реагирует с серебром в соответствии со следующим химическим уравнением: 2Ag (s) + H2S (g) => Ag2S (s) + H2(грамм)
Следовательно, Ag2S отвечает за черные слои, образованные на серебре. Однако в природе этот сульфид также можно найти в минералах акантит и аргентит. Эти два минерала отличаются от многих других своими блестящими черными кристаллами, как твердое вещество на изображении выше.
AG2S имеет полиморфную структуру, привлекательные электронные и оптоэлектронные свойства, является полупроводником и обещает стать материалом для производства фотоэлектрических устройств, таких как солнечные элементы.
Состав
Как? Через фазовый переход. Ионы перестраиваются таким образом, что повышение температуры и колебания твердого тела не нарушают электростатический баланс притяжения-отталкивания. Когда это происходит, говорят, что происходит фазовый переход, и поэтому твердое тело проявляет новые физические свойства (такие как блеск и цвет).
AG2S при нормальных температурах (ниже 179ºC) имеет моноклинную кристаллическую структуру (α- Ag2S). В дополнение к этой твердой фазе есть еще две другие: ОЦК (кубическая с центром на теле) между 179 и 586ºC и ГЦК (кубическая с центром на гранях) при очень высоких температурах (δ-Ag2S).
Минерал аргентит состоит из фазы ГЦК, также известной как β-Ag.2S. После охлаждения и превращения в акантит преобладают его структурные особенности. Следовательно, сосуществуют обе кристаллические структуры: моноклинная и ОЦК. Отсюда возникают черные твердые тела с яркими и интересными обертонами.
Гидролиз сульфида серебра (i) ((ag)2s), уравнения
Черный сульфид серебра осаждается сульфид — ионом из растворов всех соединений серебра.
Образование Ag2S происходит также при действии H2S(в присутствии влаги и кислорода воздуха) на металлическое серебро. Реакция
Получают Ag2S либо взаимодействием Ag и S либо в вакуумированных кварцевых ампулах, либо реакцией расплавленного или твердого серебра с парами серы или с парами серы в потоке аргона, азота, а также осаждением сероводородом из водного раствора AgNO3. Применяют Ag2S как компонент твердых электролитов, полупроводниковых материалов.
Сульфи́д серебра́(I) — неорганическое вещество с химической формулой Ag2S, принадлежащее к классу бинарных соединений, также может рассматриваться как соль серебра исероводородной кислоты.
Нахождение в природе
Сульфид серебра в природе встречается в виде минералов акантита, аргентита имаккинстриита. Основные свойства этих минералов представлены в таблице.
Ag2S | Ag2S | Ag1,2Cu0,8S |
серо-чёрный | темно-серый | чёрный |
моноклинная | ромбическая | ромбическая |
7,326 | 7,317 | 6,61 |
2 — 2,5 | 2 — 2,5 | 1,5 — 2,5 |
Физические свойства
Сульфид серебра — твердое вещество серо-чёрного цвета, является наименее растворимым в воде соединением серебра, в очень тонких пленках придает металлическому серебу розоватую окраску.[источник не указан 1023 дня] Нерастворим в этаноле[4].
Ag2S существует в трёх кристаллических модификациях:
Температуры фазовых переходов α→β 176,3 °C, β→γ 592 °C. Сульфид серебра склонен к образованию нестехиометрических соединений Ag2Sx, где x=
1, свойства которых могут сильно отличаться от стехиометрических.
Химические свойства
Переведение в раствор
Сульфид серебра не реагирует с кислотами при комнатной температуре.
Восстановление серебра
Следующие реакции сульфида серебра приводят к восстановлению металлического серебра:
Восстановление с помощью алюминия в концентрированном горячем растворе щёлочи:
Получение
Сульфид серебра может быть получен следующими способами:
Применение
Руды, содержащие сульфид серебра, являются одним из видов сырья для промышленного получения металлического серебра. Чистый сульфид серебра применяется как компонент твёрдых электролитов, полупроводниковых материалов[5].
Сульфид серебра используется в качестве катализатора в некоторых реакциях[6].
Сульфид серебра(II) — неорганическое соединение, соль металла серебра и сероводородной кислоты с формулой AgS, коричневые кристаллы.
Получение
Физические свойства
Сульфид серебра(II) образует коричневые кристаллы.
Результаты поиска:
Результаты поиска:
сульфид серебра http://mati-himia.3dn.ru/Papka/pap2/sulfid_serebra.doc
• Сульфид серебра(I) (Ag2S) • Сульфид серебра(II) (AgS)
Структура сульфида серебра (Ag2S), свойства, номенклатура, применение / химия
сульфид серебра неорганическое соединение, чья химическая формула Ag2S. Он состоит из черно-сероватого твердого вещества, образованного катионами Ag+ и анионы S2- в соотношении 2: 1. S2- это очень похоже на Ag+, потому что оба являются мягкими ионами, и им удается стабилизироваться друг с другом.
Серебряные украшения имеют тенденцию темнеть, теряя свой характерный блеск. Изменение цвета является не продуктом окисления серебра, а его реакции с сероводородом, присутствующим в окружающей среде при низких концентрациях; Это может происходить из-за гниения или деградации растений, животных или продуктов, богатых серой..
H2S, чья молекула несет атом серы, реагирует с серебром в соответствии со следующим химическим уравнением: 2Ag (s) + H2S (g) => Ag2S (s) + H2(G)
Следовательно, Ag2S отвечает за черные слои, сформированные на серебре. Однако в природе эту серу также можно найти в минералах acantita и argentita. Эти два минерала отличаются от многих других своими черными и яркими кристаллами, как у твердого вещества на верхнем изображении..
Ag2S представляет полиморфные структуры, привлекательные электронные и оптоэлектронные свойства, является полупроводниковым и обещает стать материалом для разработки фотоэлектрических устройств, таких как солнечные элементы.
структура
Кристаллическая структура сульфида серебра показана на верхнем изображении. Синие сферы соответствуют катионам Ag+, в то время как желтые анионы S2-. Ag2S является полиморфным, что означает, что он может принимать несколько кристаллических систем при определенных температурных условиях.
Как? Через фазовый переход. Ионы переставляются таким образом, что повышение температуры и колебания твердого тела не нарушают электростатического равновесия притяжения-отталкивания. Когда это происходит, говорят, что существует фазовый переход, и поэтому твердое тело проявляет новые физические свойства (такие как блеск и цвет)..
Ag2S при нормальной температуре (ниже 179ºC), он имеет моноклинную кристаллическую структуру (α-Ag2S). Помимо этой твердой фазы есть еще две: ОЦК (кубический с центром в теле) между 179 и 586ºC, и ГЦК (кубический с центром на гранях) при очень высоких температурах (δ-Ag2S).
Минерал аргентита состоит из ГЦК-фазы, также известной как β-Ag2S. После охлаждения и превращения в скалы, их структурные особенности преобладают вместе. Следовательно, обе кристаллические структуры сосуществуют: моноклинная и ОЦК. Следовательно, черные тела с яркими и интересными оттенками появляются.
свойства
Молекулярный вес
внешний вид
запах
Точка плавления
836ºC. Эта величина согласуется с тем, что Ag2S представляет собой соединение с небольшим ионным характером и, следовательно, плавится при температуре ниже 1000ºC.
растворимость
В воде всего 6,21 ∙ 10-15 г / л при 25ºC. То есть количество черного твердого вещества, которое растворяется, незначительно. Это, опять же, связано с небольшим полярным характером связи Ag-S, где нет существенной разницы в электроотрицательности между обоими атомами.
Кроме того, Ag2S нерастворим во всех растворителях. Ни одна молекула не может эффективно отделить свои кристаллические слои от ионов Ag+ и S2- сольватирован.
структура
На изображении структуры также видны четыре слоя связей S-Ag-S, которые движутся друг над другом, когда твердое тело подвергается пониманию. Такое поведение означает, что, несмотря на то, что он является полупроводником, он пластичен, как и многие металлы при комнатной температуре..
Слои S-Ag-S подходят правильно из-за их угловой геометрии, которые наблюдаются как зигзаг. Обладая силой понимания, они движутся по оси смещения, вызывая новые нековалентные взаимодействия между атомами серебра и серы..
Показатель преломления
Диэлектрическая проницаемость
электронный
Ag2S — амфотерный полупроводник, то есть он ведет себя так, как если бы он был N и типа р. Он также не хрупкий, поэтому его изучали для применения в электронных устройствах..
Редукционная реакция
Ag2S можно уменьшить до металлического серебра, облив черные кусочки горячей водой, NaOH, алюминием и солью. Происходит следующая реакция:
3AG2S (s) + 2Al (s) + 3H2O (l) => 6Ag (s) + 3H2S (ac) + Al2О3(S),
номенклатура
Серебро, чья электронная конфигурация [Kr] 4d105S1, он может потерять только один электрон: тот, что находится на его самой внешней орбите 5 с. Таким образом, Ag катион+ остается с электронной конфигурацией [Kr] 4d10. Следовательно, он имеет уникальную валентность +1, которая определяет, как его соединения следует называть.
Сера, с другой стороны, имеет электронную конфигурацию [Ne] 3s23p4, и ему нужно два электрона для завершения своего валентного октета. Когда он получает эти два электрона (из серебра), он превращается в анион серы, S2-, с конфигурацией [Ar]. То есть это изоэлектронный благородный газ аргона.
Так что Ag2S следует называть в соответствии со следующими номенклатурами:
Систематика
обезьянасульфид дисеребро. Здесь мы рассмотрим количество атомов каждого элемента и обозначены префиксами греческих числителей.
акции
Сульфид серебра. При уникальной валентности +1 она не указывается римскими цифрами в скобках: сульфид серебра (I); что неверно.
традиционный
приложений
Некоторые из новых применений Ag2S следующие:
-Растворы окраски их наночастиц (с различными размерами), обладают антибактериальной активностью, не токсичны, и, следовательно, могут быть использованы в областях медицины и биологии.
-Их наночастицы могут образовывать так называемые квантовые точки. Они поглощают и испускают излучение с большей интенсивностью, чем многие органические флуоресцентные молекулы, поэтому они могут вытеснить последние в качестве биологических маркеров.
-Структуры α-Ag2S заставляют его проявлять поразительные электронные свойства для использования в качестве солнечных элементов. Он также представляет собой отправную точку для синтеза новых термоэлектрических материалов и датчиков.
ссылки
Рассчитать растворимость сульфида серебра (Ag2S) в г/л, ПР =7.2*10^-50. Как изменится — Школьные Знания.com
Отсюда находим молярную растворимость:
Растворимость, выраженная в граммах на литр:
Ионный баланс раствора, содержащего и :
УЖЕ 3 РАЗ ЗАДАЮ ВОПРОС( ДАЮ 20 БАЛЛОВ Напишите уравнение реакций хлорирования этана и 2,2-диметилпропана. Укажите условия процессов. На примере первой
реакции опишите механизм свободнорадикального замещения в насыщенных углеводородах. Объясните причины селективности процессов.
СРОЧНО. 13 вариант, 3,4,5 задания
Определить массовую долю (%) индифферентных примесей в образце медного
купороса (CuSO4•5H2O), если после растворения его навески массой 0,4556 г в
азо
тной кислоте и электролиза полученного раствора выделено на платиновом катоде 0,1145 г меди.
Складіть електронні конфігурації зазначених атомів неметалів, дайте обгрунтування їх розташування у періодичній системі (період, група, підгрупа).Порі
вняйте радіус атомів та заряди ядер атомів зазначених елементів. Назвіть той елемент, у якого найбільша спорідненість до електрона і найяскравіше проявляються неметалічні властивості.
Складіть електронні конфігурації зазначених атомів металів, дайте обгрунтування їх розташування у періодичній системі (період, група, підгрупа).Порів
Сульфид серебра — это… Что такое Сульфид серебра?
Сульфи́д серебра́(I) — неорганическое вещество с химической формулой Ag2S, принадлежащее к классу бинарных соединений, также может рассматриваться как соль серебра и сероводородной кислоты.
Нахождение в природе
Сульфид серебра в природе встречается в виде минералов акантита, аргентита и маккинстриита. Основные свойства этих минералов представлены в таблице.
Акантит[1]
Аргенит[2]
Маккинстриит[3]
Физические свойства
Сульфид серебра — твердое вещество серо-чёрного цвета, является наименее растворимым в воде соединением серебра, в очень тонких пленках придает металлическому серебу розоватую окраску.[источник не указан 262 дня] Нерастворим в этаноле[4].
Ag2S существует в трёх кристаллических модификациях:
Температуры фазовых переходов α→β 176,3 °C, β→γ 592 °C. Сульфид серебра склонен к образованию нестехиометрических соединений Ag2Sx, где x=
1, свойства которых могут сильно отличаться от стехиометрических.
Химические свойства
Переведение в раствор
Сульфид серебра не реагирует с кислотами при комнатной температуре.
Восстановление серебра
Следующие реакции сульфида серебра приводят к восстановлению металлического серебра:
Восстановление с помощью алюминия в концентрированном горячем растворе щёлочи:
Получение
Сульфид серебра может быть получен следующими способами:
Применение
Руды, содержащие сульфид серебра, являются одним из видов сырья для промышленного получения металлического серебра. Чистый сульфид серебра применяется как компонент твёрдых электролитов, полупроводниковых материалов[5].
Сульфид серебра используется в качестве катализатора в некоторых реакциях[6].
Токсичность
При попадании в глаза вызывает раздражение. При длительном контакте с кожей может вызывать аргирию.
Токсично для рыб: править] Примечания
См. также
Большая Рнциклопедия Нефти Рё Газа
Добавляют к раствору тиосульфата натрия рассчитанное количество азотнокислого серебра. В результате гидролиза образуется осадок сульфида серебра и серная кислота. [16]
РџСЂРё взаимодействии катионов Ag СЃ сероводородом H2S или растворимыми сульфидами образуется черно-коричневый осадок сульфида серебра Ag2S; СЃ щелочами — черный осадок РѕРєСЃРёРґР° серебра Ag2O; СЃ тиоцианатом калия KNCS Рё СЃ РґСЂСѓРіРёРјРё растворимыми тиоцианатами — белый осадок тиоцианата серебра AgNCS, растворимый РІ избытке реагента; СЃ тиосульфатом натрия Na2S2O3 — белый осадок тиосульфата серебра Ag2S2O3, растворимый РІ избытке реактива; СЃ гидрофосфатом натрия Na2HP04 — желтый осадок фосфата ( ортофосфата) серебра Ag3P04; СЃ ферроцианидом K4 [ Fe ( CN) 6 ] Рё феррицианидом K3 [ Fe ( CN) 6 ] калия — белый осадок Ag4 [ Fe ( CN) 6 ] Рё кирпично-красный осадок Ag3 [ Fe ( CN) 6 ] соответственно. РЎ дитизоном катионы Ag образуют окрашенные комплексы. Р�звестны Рё РґСЂСѓРіРёРµ реакции катионов серебра. [17]
Р�РѕРЅ [ Ag ( CN) 2 ] — настолько стоек, что даже прибавление РёРѕРґРёРґР° калия Рє раствору комплексной соли РЅРµ РїСЂРёРІРѕРґРёС‚ Рє образованию осадка РёРѕРґРёРґР° серебра.
Но при действии сероводорода, ввиду ничтожно малой величины произведения растворимости сульфида серебра, все же выпадает осадок сульфида серебра.
Р�РѕРЅ [ Ag ( CN) 2 ] — настолько стоек, что даже прибавление РёРѕРґРёРґР° калия Рє раствору комплексной соли РЅРµ РїСЂРёРІРѕРґРёС‚ Рє образованию осадка РёРѕРґРёРґР° серебра.
Но при действии сероводорода, ввиду ничтожно малой величины произведения растворимости сульфида серебра, все же выпадает осадок сульфида серебра.
Р�РѕРЅ [ Ag ( CN) 2 ] — настолько стоек, что даже прибавление Р№РѕРґРёРґР° калия Рє раствору комплексной соли РЅРµ РїСЂРёРІРѕРґРёС‚ Рє образованию осадка Р№РѕРґРёРґР° серебра.
Но при действии сероводорода, ввиду ничтожно малого значения произведения растворимости сульфида серебра, все же выпадает осадок сульфида серебра.
Р�РѕРЅ [ Ag ( CN) 2 ] — настолько стоек, что даже прибавление РёРѕРґРёРґР° калия Рє раствору комплексной соли РЅРµ РїСЂРёРІРѕРґРёС‚ Рє РѕР± разованию осадка РёРѕРґРёРґР° серебра.
Но при действии сероводорода, ввиду ничтожно малой величины произведения растворимости сульфида серебра, все же выпадает осадок сульфида серебра.
При анализе проб сульфидов, не содержащих тиосульфатов, титрование с тимолфталеином лучше заменить определением общего содержания сульфидов иодометрическим методом и титрованием общей щелочности соляной кислотой, как описано выше. �меется и другая возможность: обработать смесь сульфида и бисульфида нитратом серебра; тогда бисульфид выделяет эквивалентное количество ионов водорода, которые можно оттитровать после отфильтровывания осадка сульфида серебра. Пробы, содержащие свободный едкий натр, можно сначала обработать титрованным раствором азотной кислоты, взятым в избытке, и оттитровать последний обратно щелочью после осаждения нитратом серебра и фильтрования. В этом случае карбонаты будут определены вместе с едкой щелочью. [22]
При этом все соединения серебра превращаются в сульфид серебра. Осадок сульфида серебра отфильтровывают, промывают водой и отбрасывают.
Фильтрат упаривают и определяют в нем роданид-ионы методом, описанным на стр. [23]
Рљ фильтрату, полученному после отделения Р Рµ ( РћРќ) Р·, смешанному СЃ промывными водами, прибавляют азотной кислоты РґРѕ слабокислой реакции Рё 3 — 5 капель соляной кислоты ( 1: 2), после чего смесь нагревают РЅР° РІРѕРґСЏРЅРѕР№ бане РґРѕ коагуляции хлорида серебра. Промытый осадок хлорида серебра РІРЅРѕРІСЊ растворяют РІ 10 % растворе аммиака Рё пропусканием сероводорода РЅР° холоду осаждают сульфид серебра. Выделенный центрифугированием осадок сульфида серебра промывают сероводородной РІРѕРґРѕР№ Рё растворяют РїСЂРё нагревании РІ 1 РјР» концентрированной азотной кислоты. Р’ полученный раствор РІРЅРѕСЃСЏС‚ 5 РјРі нитрата железа ( РІ расчете РЅР° Fe) Рё РїСЂРѕРёР·РІРѕРґСЏС‚ осаждение РіРёРґСЂРѕРѕРєРёСЃРё железа 10 % раствором аммиака. После отделения РіРёРґСЂРѕРѕРєРёСЃРё железа раствор подкисляют азотной кислотой Рё прибавлением соляной кислоты осаждают хлорид серебра, который СЃРЅРѕРІР° переводят РІ сульфид серебра. Осаждение РіРёРґСЂРѕРѕРєРёСЃРё железа СЃ промежуточным выделением хлорида серебра РїСЂРѕРёР·РІРѕРґСЏС‚ еще РґРІР° раза. [24]
Однако конечная точка титрования здесь не резкая.
Сосуд, содержащий эту смесь, закрывают пробкой и встряхивают в течение 2 мин.
Затем реакционную смесь подкисляют азотной кислотой. Осадок сульфида серебра отфильтровывают и отбрасывают. [25]
�звестно, что только фториды РЗРи различные соли серебра имеют ионную проводимость при комнатной температуре.
Поэтому большой интерес представляют исследования по искусственному увеличению электропроводности кристаллических веществ за счет введения в структуру кристалла определенного количества примесей, которые увеличивают число дислокаций в кристаллической решетке и тем самым повышают концентрацию переносчиков тока. Отсутствие соединений с ионным характером проводимости заставило исследователей использовать в качестве чувствительных элементов ион-селективных электродов более сложные композиции, состоящие из смеси веществ с ионной проводимостью и труднорастворимого неорганического соединения, содержащего ион, одноименный с ионом активного компонента. Обычно в качестве активного компонента используют сульфид серебра. Механизм работы такого электрода основан на введении в осадок сульфида серебра сульфида другого металла с большим значением произведения растворимости, чем для сульфида серебра. [26]
Алкилиодиды, образующиеся при действии кипящей иодистоводородной кислоты, перегоняют в слабом токе двуокиси углерода через промывные сосуды, заполненные суспензией красного фосфора, в приемник, содержащий спиртовый р-аствор нитрата серебра. Алкилиодид при взаимодействии с нитратом серебра осаждается в виде двойной соли AgJ 2AgNO3, разлагающейся при нагревании. �одид серебра отфильтровывают, сушат и взвешивают, как обычно. В промывных сосудах сероводород не задерживается. При его присутствии в исследуемом веществе или реактивах в приемнике образуется осадок сульфида серебра. [27]
Алкилиодиды, образующиеся при действии кипящей иодистоводородной кислоты, перегоняют в слабом токе двуокиси углерода через промывные сосуды, заполненные суспензией красного фосфора, в приемник, содержащий спиртовый раствор нитрата серебра. Алкилиодид при взаимодействии с нитратом серебра осаждается в виде двойной соли AgJ 2AgNO3, разлагающейся при нагревании. �одид серебра отфильтровывают, сушат и взвешивают, как обычно. В промывных сосудах сероводород не задерживается. При его присутствии в исследуемом веществе или реактивах в приемнике образуется осадок сульфида серебра. [28]
Качественные реакции органических и неорганических веществ: таблица
Качественные реакции неорганических веществ на катионы, анионы, для газов и для щелочных металлов
Качественные реакции на катионы
Катион | Реактив | Реакция | Характерные признаки |
Н+ | Лакмус Метилоранж | Красное окрашивание Розовое окрашивание | |
Ва2+ | Растворимые сульфаты, серная кислота. Пламя спиртовки. | Ba2+ + SO42- = BaSO4↓ | Белый мелкодисперсный осадок BaSO4, нерастворимый в H2O и HNO3. Желто-зеленая окраска пламени. |
Ag+ | Растворимые хлориды, соляная кислота | Ag+ + Cl- = AgCl↓ | Белый творожистый осадок AgCl, нерастворимый в H2O и HNO3 |
NH4+ | Раствор щелочи, нагревание, влажная фильтровальная бумажка, пропитанная лакмусом или фенолфталеином; палочка, смоченная HCl(конц) | NH4+ + OH- = NH4OH (NH3↑ + HO2) NH3 + HCl = NH4Cl | Специфический запах аммиака. Изменение окраски бумажки. Палочка, смоченная HCl(конц) «дымит» |
Al3+ | Растворы щелочи, кислоты | Al3+ + 3OH- = Al(OH)3↓ Al(OH)3 + 3H+ = Al3+ + 3H2O Al(OH)3 + OH- = [Al(OH)4]- | Белый осадок Al(OH)3, растворимый в кислоте в избытке щелочи |
Zn2+ | Растворы щелочи, кислоты | Zn2+ + 2OH- = Zn(OH)2↓ Zn(OH)2 + 2H+ = Zn2+ + 2H2O Zn(OH)2 + 2OH- = [Zn(OH)4]2- | Белый осадок Zn(OH)2, растворимый в кислоте в избытке щелочи |
Mg2+ | Раствор щелочи | Mg2+ + 2OH- = Mg(OH)2↓ | Белый осадок Mg(OH)2, нерастворимый в избытке щелочи |
Cr3+ | Растворы щелочи, кислоты | Cr3+ + 3OH- = Cr(OH)3↓ Cr(OH)3 + 3H+ = Cr3+ + 3H2O Cr(OH)3 + OH- = [Cr(OH)4]- | Cеро-зеленый осадок Cr(OH)3, растворимый в кислоте в избытке щелочи |
Fe2+ | Раствор красной кровяной соли K3[Fe(CN)6] | 3Fe2++2[Fe(CN)6]3- = Fe3[Fe(CN)6]2↓ | Образование турнбулевой сини Fe3[Fe(CN)6]2 |
Fe3+ | Раствор роданида аммония NH4CNS Раствор желтой кровяной соли K4[Fe(CN)6] | Fe3+ + 3CNS- = Fe(CNS)3 4Fe3+ + 3[Fe(CN)6]4+ = Fe4[Fe(CN)6]3↓ | Кроваво-красное окрашивание раствора Образование берлинской лазури Fe4[Fe(CN)6]3 |
Cu2+ | Раствор щелочи с последующим нагреванием | Cu2+ + 2OH- = Cu(OH)2↓ Cu(OH)2 → CuO + H2O | Ярко-голубой студенистый осадок, нерастворимый в избытке щелочи, разлагающийся при нагревании на черный осадок CuO и воду |
Качественные реакции на анионы
OH- | Лакмус | Синее окрашивание | |
Фенолфталеин | Малиновое окрашивание | ||
Метилоранж | Желтое окрашивание | ||
Cl- | Раствор нитрата серебра AgNO3 | Ag+ + Cl- = AgCl↓ | Белый творожистый осадок, нерастворимый в H2O и HNO3 |
Br- | Раствор нитрата серебра AgNO3 | Ag+ + Br- = AgBr↓ | Светло-желтый осадок, нерастворимый в H2O и HNO3 |
I- | Раствор нитрата серебра AgNO3 | Ag+ + I- = AgI↓ | Желтый осадок, нерастворимый в H2O и HNO3 |
NO3- | Концентрированная серная кислота и медная стружка при нагревании | H2SO4+ 2NH4NO3=(NH4)2SO4 + 2HNO3 4HNO3+Cu → Cu(NO3)2+2NO2 +2H2O | Бурый газ (NO2), голубая окраска раствора |
SO42- | Раствор соли бария | Ba2+ + SO42- = BaSO4↓ | Белый мелкодисперсный осадок, нерастворимый в H2O и HNO3 |
SO32- | Сильная кислота | 2H+ + SO32- = H2SO3 (SO2↑ +H2O) | Газ с резким специфическим запахом |
S2- | Раствор соли свинца | Pb2+ + S2- = PbS↓ | Черно-бурый осадок |
CO32- | Cильная кислота | 2H+ + CO32- = H2CO3 (CO2↑+ H2O) | Газ без цвета и запаха, не поддерживает горение |
HCO3- | H+ + HCO3- = H2O + CO2↑ | ||
PO43- | Раствор нитрата серебра в слабощелочной среде | 3Ag+ + PO43- = Ag3PO4↓ | Желтый осадок, растворимый в HNO3 |
HPO43- | 3Ag+ + HPO42- = Ag3PO4↓ +H+ | ||
H2PO4 — | 3Ag+ + H2PO4- = Ag3PO4 +2H+ |
Качественные реакции для газов
Вещество | Реактив | Реакция | Характерные признаки |
Н2 | О2 (сжигание) | 2Н2 + О2 = 2Н2О | Запотевание холодного предмета |
О2 | С (тлеющая лучинка) | С + О2 = СО2 | Вспышка |
Сl2 | Бумажка, пропитанная крахмальным клейстером и раствором иодида калия | 2KI + Cl2 = 2KCl + I2↓ | Посинение бумажки |
I2 | Крахмальный клейстер | Синее окрашивание | |
СО2 | Известковая вода | Са(ОН)2 + СО2 = СаСО3↓+ Н2О | Помутнение раствора |
NH3 | Хлороводород | NH3 + HCl = NH4Cl | Белый дым. Специфический запах NH3, образование белого дыма (NH4Cl) |
Качественные реакции для щелочных металлов
Все соединения щелочных металлов определяют по цвету пламени: