Главная » Правописание слов » Как пишется теорема виета

Слово Как пишется теорема виета - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Теорема Виета

После того, как вы внимательно изучите, как решать квадратные уравнения обычным образом с помощью формулы для корней можно рассмотреть другой способ решения квадратных уравнений — с помощью теоремы Виета.

Перед тем, как изучить теорему Виета, хорошо потренируйтесь в определении коэффициентов « a », « b » и « с » в квадратных уравнениях. Без этого вам будет трудно применить теорему Виета.

Когда можно применить теорему Виета

Не ко всем квадратным уравнениям имеет смысл использовать эту теорему. Применять теорему Виета имеет смысл только к приведённым квадратным уравнениям.

Приведенное квадратное уравнение — это уравнение, в котором старший коэффициент « a = 1 ». В общем виде приведенное квадратное уравнение выглядит следующим образом:

Обратите внимание, что разница с обычным общим видом квадратного уравнения « ax 2 + bx + c = 0 » в том, что в приведённом уравнении « x 2 + px + q = 0 » коэффициент « а = 1 ».

Если сравнить приведенное квадратное уравнение « x 2 + px + q = 0 » с обычным общим видом квадратного уравнения « ax 2 + bx + c = 0 », то становится видно,
что « p = b », а « q = c ».

Теперь давайте на примерах разберем, к каким уравнениям можно применять теорему Виета, а где это не целесообразно.

Так как « a = 1 » можно использовать теорему Виета.

Приведем уравнение к общему виду:

Так как « a = 3 » не следует использовать теорему Виета.

Приведем уравнение к общему виду:

Так как « a = −1 » не следует использовать теорему Виета.

Как использовать теорему Виета

Теперь мы готовы перейти к самому методу Виета для решения квадратных уравнений.

Теорема Виета для приведённых квадратных уравнений « x 2 + px + q = 0 » гласит что справедливо следующее:

Чтобы было проще запомнить формулу Виета, следует запомнить:
«Коэффициент « p » — значит плохой, поэтому он берется со знаком минус ».

Так как в этом уравнении « a = 1 », квадратное уравнение считается приведённым, значит, можно использовать метод Виета. Выпишем коэффициенты « p » и « q ».

Запишем теорему Виета для квадратного уравнения.

x1 + x2 = − 4
x1 · x2 = −5

Методом подбора мы приходим к тому, что корни уравнения « x1 = −5 » и « x2 = 1 ». Запишем ответ.

Рассмотрим другой пример.

Старший коэффициент « a = 1 » поэтому можно применять теорему Виета.

x1 + x2 = − 1
x1 · x2 = −6

Методом подбора получим, что корни уравнения « x1 = −3 » и « x2 = 2 ». Запишем ответ.

Если у вас не получается решить уравнение с помощью теоремы Виета, не отчаивайтесь. Вы всегда можете решить любое квадратное уравнение, используя формулу для нахождения корней.

Деление уравнение на первый коэффициент

Рассмотрим уравнение, которое по заданию требуется решить, используя теорему Виета.

Сейчас в уравнении « a = 2 », поэтому перед тем, как использовать теорему Виета нужно сделать так, чтобы « a = 1 ».

Для этого достаточно разделить все уравнение на « 2 ». Таким образом, мы сделаем квадратное уравнение приведённым.

Теперь « a = 1 » и можно смело записывать формулу Виета и находить корни методом подбора.

x1 + x2 = − (−8)
x1 · x2 = −9
x1 + x2 = 8
x1 · x2 = −9

Методом подбора получим, что корни уравнения « x1 = 9 » и « x2 = −1 ». Запишем ответ.

Бывают задачи, где требуется найти не только корни уравнения, но и коэффициенты самого уравнения. Например, как в такой задаче.

Корни « x1 » и « x2 » квадратного уравнения « x 2 + px + 3 = 0 » удовлетворяют условию « x2 = 3x1 ». Найти « p », « x1 », « x2 ».

Запишем теорему Виета для этого уравнения.

По условию дано, что « x2 = 3x1 ». Подставим это выражение в систему вместо « x2».

x1 + 3x1 = −p
x1 · 3x1 = 3
4x1 = −p
3x1 2 = 3 |(:3)
4x1 + p = 0
x1 2 = 1
p = −4x1
x1 2 = 1

Решим полученное квадратное уравнение « x1 2 = 1 » методом подбора и найдем « x1 ».

Мы получили два значения « x1 ». Для каждого из полученных значений найдем « p » и запишем все полученные результаты в ответ.

Теорема Виета в общем виде

В школьном курсе математики теорему Виета используют только для приведённых уравнений, где старший коэффициент « a = 1 », но, на самом деле, теорему Виета можно применить к любому квадратному уравнению.

В общем виде теорема Виета для квадратного уравнения выглядит так:

x1 + x2 =

−p
a
x1 · x2 =

q
a

Убедимся в правильности этой теоремы на примере. Рассмотрим неприведённое квадратное уравнение.

Используем для него теорему Виета в общем виде.

x1 + x2 =

−3
3
x1 · x2 =

−18
3
x1 + x2 = −1
x1 · x2 = −6

Методом подбора получим, что корни уравнения « x1 = −3 » и « x2 = 2 ». Запишем ответ.

В заданиях школьной математики мы не рекомендуем использовать теорему Виета в общем виде.

Другими словами, реальную пользу теорема Виета приносит только для приведённых квадратных уравнений, в которых « a = 1 ». Именно в таких случаях она не усложняет жизнь, а позволят без дополнительных расчетов быстро найти корни.

Источник

Теорема Виета

Теорема Виета:

Сумма корней приведённого квадратного уравнения

равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену

Если приведённое квадратное уравнение имеет вид

то его корни равны:

,

,

а теперь найдём их произведение:

Равенства, показывающие зависимость между корнями и коэффициентами квадратного уравнения:

называются формулами Виета.

Примечание: если дискриминант равен нулю (D = 0), то подразумевается, что уравнение имеет не один корень, а два равных корня.

Обратная теорема

Теорема:

Если сумма двух чисел равна -p, а их произведение равно q, то эти числа являются корнями приведённого квадратного уравнения:

Это доказывает, что число x1 является корнем уравнения x 2 + px + q = 0. Точно так же можно доказать, что и число x2 является корнем для этого уравнения.

Решение примеров

Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

Пример 1. Найти корни уравнения:

очевидно, что корни равны 1 и 2:

Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

Пример 2. Найти корни уравнения:

С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

Пример 1. Составить квадратное уравнение по его корням:

Следовательно, искомое уравнение:

Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

Источник

Теорема Виета для квадратного уравнения

Основные понятия

Квадратное уравнение — это ax 2 + bx + c = 0, где a — первый коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Существует три вида квадратных уравнений:

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Формула для его поиска записывается так: D = b 2 − 4ac. Его свойства:

В математике теоремой принято называть утверждение, у которого ранее было сформулировано доказательство.

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Обучение на курсах по математике помогает быстрее разобраться в новых темах и подтянуть оценки в школе.

Доказательство теоремы Виета

Дано квадратное уравнение x 2 + bx + c = 0. Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену:

Докажем, что следующие равенства верны

Чтобы найти сумму корней x₁ и x₂ подставим вместо них то, что соответствует им из правой части формул корней. Напомним, что в данном квадратном уравнении x 2 + bx + c = 0 старший коэффициент равен единице. Значит после подстановки знаменатель будет равен 2.

Мы доказали: x₁ + x₂ = −b.

Далее произведем аналогичные действия, чтобы доказать о равенстве x₁ * x₂ свободному члену c.

Мы доказали: x₁ * x₂ = c.

Значит сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком (x₁ + x₂ = −b), а произведение корней равно свободному члену (x₁ * x₂= c). Теорема доказана.

Обратная теорема Виета

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Она формулируется так:

Обратная теорема Виета

Если числа x₁ и x₂ таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x 2 + bx + c = 0.

Обратные теоремы зачастую сформулированы так, что их утверждением является заключение первой теоремы. Так, при доказательстве теоремы Виета стало понятно, что сумма x₁ и x₂ равна −b, а их произведение равно c. В обратной теореме это является утверждением.

Докажем теорему, обратную теореме Виета

Корни x₁ и x₂ обозначим как m и n. Тогда утверждение будет звучать следующим образом: если сумма чисел m и n равна второму коэффициенту x 2 + bx + c = 0, взятому с противоположным знаком, а произведение равно свободному члену, то числа m и n являются корнями x 2 + bx + c = 0.

Зафиксируем, что сумма m и n равна −b, а произведение равно c.

Чтобы доказать, что числа m и n являются корнями уравнения, нужно поочередно подставить буквы m и n вместо x, затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями x 2 + bx + c = 0.

При x = m получается верное равенство. Значит число m является искомым корнем.

Мы доказали: числа m и n являются корнями уравнения x 2 + bx + c = 0.

Примеры

Для закрепления знаний рассмотрим примеры решения уравнений по теореме, обратной теореме Виета.

Дано: x 2 − 6x + 8 = 0.

Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.
2 − 6x + 8 = 0″ height=»59″ src=»https://lh6.googleusercontent.com/tFokx3SM93Hwlr7ZM9BqX1xiHKv_2dUIB9MoNa8RAwSTmQKXdCcqcFXxTZmxNGw7bOVek-RzRXqBkoCqnYMiqIYVwKhfnHeU-7mA03feEqJTlyKB7e-OsTTKgPaOlddfiaTGszcv» width=»99″>

Имея эти два равенства можно подобрать подходящие корни, которые будут удовлетворять как равенству обоим равенствам системы.

Подбор корней удобнее выполнять с помощью их произведения. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x₁ и x₂ надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x₁ + x₂ = 6. Значения 4 и 2 подходят обоим равенствам:

Значит числа 4 и 2 являются корнями уравнения x 2 − 6x + 8 = 0.
2 − 6x + 8 = 0″ height=»57″ src=»https://lh3.googleusercontent.com/rohB7Bvd-elMhTxEUuOhKqLJjqLAvo9VlJxZvOnMeDAHARfKT-SYOWb1WXTTWEN2h0oKbLl6wH7lc0IWL_vH3Si2AJGAGXVn8TPFDT_J1Wu2WeoQ-WP1qgXjCnZ99tWUkK2BOvF2″ width=»64″>

Неприведенное квадратное уравнение

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым, то есть его первый коэффициент равен единице:

ax 2 + bx + c = 0, где а = 1.

Источник

Теорема Виета, формулы Виета

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Формулировка и доказательство теоремы Виета

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны — b a и c a соответственно.

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

Приведем еще одну формулировку теоремы Виета.

Теорема, обратная теореме Виета

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Теорема, обратная теореме Виета, доказана.

Примеры использования теоремы Виета

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Решение

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Решение

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Решение

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:

Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?

Решение

Ответ: Нет

При каких значениях параметра r квадратное уравнение x 2 + ( r + 2 ) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.

Решение

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Получить формулы Виета нам помогают:

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

Источник

Теорема Виета и обратная формула Виета для чайников, как применять

Теорема Виета 8 класс

Теорема Виета для квадратного уравнения общего вида.

Формулировка теоремы

коэффициенты a1, a2…, an можно выразить в виде симметрических многочленов от корней, т.е.:

Другими словами, (−1) k ak равняется сумме всех возможных произведений из k корней.

Примечание: теорема названа в честь французского маетиматика Франсуа Виета.

Кубическое уравнение

Квадратное уравнение и его корни. Неполные квадратные уравнения

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x – переменная, a, b и c – некоторые числа, причём ( a neq 0 ).

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где ( a neq 0 ), наибольшая степень переменной x — квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением. Например, приведёнными квадратными уравнениями являются уравнения
( x^2-11x+30=0, quad x^2-6x=0, quad x^2-8=0 )

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где ( c neq 0 );
2) ax 2 +bx=0, где ( b neq 0 );
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при ( b neq 0 ) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Обратная теорема

Виет Франсуа

Виет Франсуа (1540-13.12.1603) родился в городе Фонтене ле-Конт провинции Пуату, недалеко от знаменитой крепости Ла-Рошель.

Получив юридическое образование, он с девятнадцати лет успешно занимался адвокатской практикой в родном городе. Как адвокат Виет пользовался у населения авторитетом и уважением.

Он был широко образованным человеком. Знал астрономию и математику, и все свободное время отдавал этим наукам.

Главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики: почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся.

Нельзя было записывать и, следовательно, начать в общем виде алгебраические сравнения или какие-нибудь другие алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Поэтому необходимо было доказать, что существуют такие общие действия над всеми числами, которые от этих самих чисел не зависят. Виет и его последователи установи, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка.

Главное, что с этими числами можно производить алгебраические действия и в результате снова получать числа того же рода. Значит, их можно обозначать какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытий, поставив перед собой цель изучать не числа, а действия над ними. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений.

Не случайно за это Виета называют “отцом” алгебры, основоположником буквенной символики.

Из других открытий Виета следует отметить выражение для синусов и косинусов кратных дуг через sin x и cos x.

Эти знания тригонометрии Виет с успехом применял как в алгебре при решении алгебраических уравнений, так и в геометрии, например, при решении с помощью циркуля и линейки знаменитой задачи Аполлония Пергского о построении круга, касательного к трем данным кругам.

Гордясь найденным решением, Виет называл себя Алоллонием Гальским (Галлией во времена древнего Рима называли современную Францию).

Нельзя сказать, что во Франции о Виете ничего не знали.

Громкую славу он получил при Генрихе III, во время франко-испанской войны.

Испанские инквизиторы изобрели очень сложную тайнопись (шифр), которая все время изменялась и дополнялась.

Благодаря такому шифру воинствующая и сильная в то время Испания могла свободно переписываться с противниками французского короля даже внутри Франции, и эта переписка всё время оставалась неразгаданной. После бесплодных попыток найти ключ к шифру король обратился к Виету.

Рассказывают, что Виет две недели подряд дни и ночи просидев за работой, все же нашел ключ к испанскому шифру. После этого неожиданно для испанцев Франция стала выигрывать одно сражение за другим. Испанцы долго недоумевали. Наконец им стало известно, что шифр для французов уже не секрет и что виновник его расшифровки – Виет. Будучи уверенными в невозможности разгадать их способ тайнописи людьми, они обвинили Францию перед папой римским и инквизицией в кознях дьявола, а Виет был обвинен в союзе с дьяволом и приговорен к сожжению на костре. К счастью для науки, он не был выдан инквизиции.

В конце 16 столетия голландский математик Андриан ван-Роумен, известный, пожалуй, тем, что вычислил число Пи с восемнадцатью верными знаками, решил бросить вызов всем математикам мира.

Он разослал во все европейские страны уравнение 45-й степени:

французским математикам он решил это уравнение не посылать, считая, что там нет способных справиться с задачей: Декарт в то время еще не родился, Пьера Рамуса в 1572 убили в Варфоломеевскую ночь, о других математиках не было слышно.

Так французские математики не смогли принять вызов. Больше всего было ущемлено самолюбие Генриха IV. – И все же у меня есть математик! – воскликнул король. – Позовите Виета! В приемную короля вошел пятидесятитрехлетний седоволосый советник короля Франсуа Виет. Он тут же, в присутствие короля, министров и гостей, нашел один корень предложенного уравнения. Виет увидел, что а есть сторона правильного 15-угольника, вписанного в круг радиуса 1, а по коэффициентам второго и последнего членов заключил, что х есть хорда 1/45 этой дуги, как оно и было на самом деле.

Король ликовал, все поздравляли придворного советника.

На следующий день Виет нашел еще 22 корня уравнения.

После такого успеха Виета составитель злополучного уравнения Роумен стал ревностным почитателем его.

В последние годы жизни Виет занимал важные посты при дворе короля Франции.

В мемуарах некоторых придворных Франции есть указание, что Виет был женат, что у него была дочь, единственная наследница имения, по которому Виет звался сеньор де ла Биготье. В придворных новостях маркиз Летуаль писал: “…14 февраля 1603 г. господин Виет, рекетмейстер, человек большого ума и рассуждения и один из самых ученых математиков века умер … в Париже. Ему было более шестидесяти лет”. Подозревают, что Виет был убит.

Несмотря на огромное желание и упорные занятия, книгу, которую назвал “Искусство анализа, или Новая алгебра”.

Виет всё же не завершил. Но главное было написано.

Решение неполных квадратных уравнений

Покажем, как решаются неполные квадратные уравнения на примерах.

Поскольку произведение двух сомножителей равно нулю тогда и только тогда, когда, или первый сомножитель равен нулю, или второй сомножитель равен нулю, то из уравнения (4) получаем:

Ответ : .

Ответ : .

Ответ : .

Выделение полного квадрата

Выделением полного квадрата называют представление квадратного трёхчлена (1) в виде:

Для того, чтобы получить формулу (6), совершим следующие преобразования:

Формула (6) получена.

Решение примеров

Зависимость между корнями и коэффициентами квадратного уравнения позволяет в некоторых случаях находить корни уравнения устно, не используя формулу корней.

Пример 1. Найти корни уравнения:

очевидно, что корни равны 1 и 2:

Подставив числа 1 и 2 в уравнение, убедимся, что корни найдены правильно:

Пример 2. Найти корни уравнения:

С помощью теоремы, обратной теореме Виета, можно составлять квадратное уравнение по его корням.

Пример 1. Составить квадратное уравнение по его корням:

Следовательно, искомое уравнение:

Пример 2. Записать приведённое квадратное уравнение, имеющее корни:

Заключение

На мой взгляд, формулы Виета – очень важное математическое открытие. Люди пользуются ей уже пятое столетие. Но история теоремы на этом не закончится. Я уверена, что и в будущем её будут применять, исследовать и открывать в ней новые аспекты.

Удивительна жизнь Франсуа Виета, его преданность науке, его желание навести порядок в математических записях решений и правил. Жизнь Виета – пример для всех людей, желающих посвятить себя науке и не боящихся сложной умственной работы.

Работая с учебной литературой и решая подобранные моим учителем задачи, я была удивлена результатом своего исследования, большим количеством заданий, которые решаются с помощью теоремы Виета.

Выполняя работу, я узнала о выполнимости теорема Виета для кубических уравнений и алгебраических уравнений степени п.

Франсуа Виет очень гордился своей знаменитой теоремой.

Теорема Виета – азбука в решении квадратных уравнений и очень красивая азбука.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как пишется теорема виета, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как пишется теорема виета", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как пишется теорема виета:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *