Глоссарий. Химия
Ма́гний — элемент главной подгруппы второй группы, третьего периода периодической системы химических элементов, с атомным номером 12. Обозначается символом Mg (лат. Magnesium). Простое вещество магний (CAS-номер: 7439-95-4) — лёгкий, ковкий металл серебристо-белого цвета. Средне распространён в природе. При горении выделяется большое количество света и тепла.
Происхождение названия
В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари называли её горькой солью, а также английской, или эпсомской солью. Минерал эпсомит имеет состав MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита. Впервые был выделен в чистом виде сэром Хемфри Дэви в 1808 году.
Получение
Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния: MgCl2 (электролиз) = Mg + Cl2. Расплавленный металл периодически отбирают из электролизной ванны, а в нее добавляют новые порции магнийсодержащего сырья. Так как полученный таким способом магний содержит сравнительно много (около 0,1 %) примесей, при необходимости «сырой» магний подвергают дополнительной очистке. С этой целью используют электролитическое рафинирование, переплавку в вакууме с использованием специальных добавок — флюсов, которые «отнимают» примеси от магния или перегонку (сублимацию) металла в вакууме. Чистота рафинированного магния достигает 99,999 % и выше. Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс: MgO + C = Mg + CO Применение кремния позволяет получать магний из такого сырья, как доломит CaCO3·MgCO3, не проводя предварительного разделения магния и кальция. С участием доломита протекают реакции: CaCO3·MgCO3 = CaO + MgO + 2CO2, 2MgO + CaO + Si = CaSiO3 + 2Mg. Преимущество термического способа состоит в том, что он позволяет получать магний более высокой чистоты. Для получения магния используют не только минеральное сырьё, но и морскую воду.
Физические свойства
Магний — металл серебристо-белого цвета с гексагональной решёткой, пространственная группа P 63/mmc. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Плотность магния при 20 °C — 1,737 г/см³, температура плавления металла tпл = 651 °C, температура кипения — tкип = 1103 °C, теплопроводность при 20 °C — 156 Вт/(м·К). Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.
Химические свойства
Смесь порошкового магния с перманганатом калия KMnO4 — взрывчатое вещество. Раскаленный магний реагирует с водой: Mg (раск.) + Н2О = MgO + H2↑; Щелочи на магний не действуют, в кислотах он растворяется легко с выделением водорода: Mg + 2HCl = MgCl2 + H2; При нагревании на воздухе магний сгорает, с образованием оксида, также с азотом может образовываться небольшое количество нитрида: 2Mg + О2 = 2MgO; 3Mg + N2 = Mg3N2
Chemistry48.Ru
Сайт учителя химии и биологии МБОУ СОШ №2 с.Казаки Елецкого р-на Липецкой обл. Радиной М.В.
Сообщение о Mg :
MgSO4 используется в медицине в качестве слабительного средства. Содержится в морской воде и придает ей горький вкус.
BaSO4 — сульфат бария благодаря нерастворимости и способности задерживать рентгеновские лучи применяют в рентгенодиагностике («баритовая каша») для диагностики заболеваний желудочно-кишечного тракта.
Са3(РО4)2 — фосфат кальция, входит в состав фосфоритов (горная порода) и апатитов (минерал), а также в состав костей и зубов. В организме взрослого человека содержится более 1 кг кальция в виде соединения Са3(РО4)2.
Кальций имеет важное значение для живых организмов, это материал для постройки скелетов. Он играет существенную роль в процессах жизнедеятельности: ионы кальция необходимы для работы сердца, участвуют в процессах свертывания крови.
На долю кальция приходится более 1,5% массы тела человека, 98% кальция содержится в костях. Однако кальций необходим не только при формировании скелета, но и для работы нервной системы.
Человек должен получать в день 1,5 г кальция. Наибольшие количества кальция содержатся в сыре, твороге, петрушке, салате.
Магний также является необходимым биоэлементом, играя роль стимулятора обмена веществ, содержится в печени, костях, крови, нервной ткани и мозге. Магния в человеческом организме намного меньше, чем кальция, — всего около 40 г. Магний входит в состав хлорофилла, а следовательно, участвует в процессах фотосинтеза. Без хлорофилла не было бы жизни, а без магния — хлорофилла, ведь в нем содержится 2% этого элемента.
Открытие магния и кальция. Магний был впервые получен Г. Дэви в 1808 г. из белой магнезии — минерала, найденного близ греческого города Магнезия. По названию минерала и дали название простому веществу и химическому элементу.
Полученный Г. Дэви металл был загрязнен примесями, а чистый магний получил француз А. Бюсси в 1829 г. Кальций был впервые получен также Г. Дэви в 1808 г. Название элемента происходит от лат. слова кальс, что означает «известь, мягкий камень».
§ 15. Бериллий, магний и щёлочноземельные металлы
Строение и свойства атомов. Бериллий Be, магний Mg и щёлочноземельные металлы: кальций Са, стронций Sr, барий Ва и радий Ra — элементы главной подгруппы II группы (НА группы) Периодической системы Д. И. Менделеева. Атомы этих элементов содержат на внешнем энергетическом уровне два электрона, которые они отдают при химических взаимодействиях, и поэтому являются сильнейшими восстановителями. Во всех соединениях они имеют степень окисления +2. С увеличением порядкового номера сверху вниз в подгруппе восстановительные свойства элементов усиливаются, что связано с увеличением радиусов их атомов.
Радий — радиоактивный элемент, содержание его в природе невелико.
Бериллий, магний и щёлочноземельные металлы — простые вещества. Лёгкие серебристо-белые металлы, стронций имеет золотистый оттенок. Он значительно твёрже бария, барий же по мягкости напоминает свинец.
На воздухе при обычной температуре поверхность бериллия и магния покрывается защитной оксидной плёнкой. Щёлочноземельные металлы взаимодействуют с кислородом воздуха более активно, поэтому их хранят под слоем керосина или в запаянных сосудах, как и щелочные металлы.
При нагревании на воздухе все рассматриваемые металлы (обозначим их М) энергично сгорают с образованием оксидов:
Реакция сжигания магния сопровождается ослепительной вспышкой, раньше её применяли при фотографировании объектов в тёмных помещениях. В настоящее время используют электрическую вспышку.
Бериллий, магний и все щёлочноземельные металлы взаимодействуют при нагревании с неметаллами — хлором, серой, азотом и т. д., образуя соответственно хлориды, сульфиды и нитриды:
При высоких температурах металлы главной подгруппы II группы (IIА группы) Периодической системы Д. И. Менделеева окисляются водородом до гидридов:
Гидриды — это твёрдые солеподобные соединения металлов с водородом, похожие на галогениды — соединения металлов с галогенами. Теперь, очевидно, вам стало понятно, почему водород находится и в главной подгруппе VII группы (VIIA группы).
Из всех металлов главной подгруппы II группы (ИА группы) Периодической системы Д. И. Менделеева только бериллий практически не взаимодействует с водой (препятствует защитная плёнка на его поверхности), магний реагирует с ней медленно, остальные металлы бурно взаимодействуют с водой при обычных условиях (рис. 54):
Подобно алюминию, магний и кальций способны восстанавливать редкие металлы — ниобий, тантал, молибден, вольфрам, титан и др. — из их оксидов, например:
Такие способы получения металлов по аналогии с алюминотермией называют магниетермией и калъциетермией.
Магний и кальций применяют для производства редких металлов и лёгких сплавов. Например, магний входит в состав дюралюминия, а кальций — один из компонентов свинцовых сплавов, необходимых для изготовления подшипников и оболочек кабелей.
Соединения бериллия, магния и щёлочноземельных металлов. В природе щёлочноземельные металлы, как и щелочные металлы, находятся только в форме соединений вследствие своей высокой химической активности.
Оксиды МО — твёрдые белые тугоплавкие вещества, устойчивые к воздействию высоких температур. Проявляют основные свойства, кроме оксида бериллия, имеющего амфотерный характер.
Оксид магния малоактивен в реакции с водой, все остальные оксиды очень бурно взаимодействуют с ней:
Оксиды получают обжигом карбонатов:
В технике оксид кальция СаО называют негашёной известью, a MgO — жжёной магнезией. Оба этих оксида используют в производстве строительных материалов.
Гидроксиды щёлочноземельных металлов относятся к щелочам. Их растворимость в воде увеличивается в ряду Са(ОН)2→Sr(OH)2→Ва(ОН)2. Эти гидроксиды получают взаимодействием соответствующего оксида с водой.
Реакция оксида кальция с водой сопровождается выделением большого количества теплоты и называется гашением извести (рис. 55), а образующийся Са(ОН)2 — гашёной известью:
Прозрачный раствор гидроксида кальция называют известковой водой, а белую взвесь Са(ОН)2 в воде — известковым молоком. Гашёную известь широко используют в строительстве. Известковое молоко применяют в сахарной промышленности для очистки свекловичного сока.
Соли бериллия, магния и щёлочноземельных металлов получают взаимодействием их с кислотами. Галогениды (фториды, хлориды, бромиды и иодиды) этих металлов — белые кристаллические вещества, большинство из них растворимо в воде. Из сульфатов хорошо растворимы в воде только сульфаты бериллия и магния. Растворимость сульфатов элементов главной подгруппы II группы Периодической системы Д. И. Менделеева уменьшается от BeSO4 к BaSO4. Карбонаты этих металлов малорастворимы или нерастворимы в воде.
Сульфиды щёлочноземельных металлов, содержащие в малых количествах примеси тяжёлых металлов, после предварительного освещения начинают светиться различными цветами — красным, оранжевым, голубым, зелёным. Они входят в состав специальных светящихся красок, которые называют фосфорами.
Их используют для изготовления светящихся дорожных знаков, циферблатов часов и других изделий.
Рассмотрим наиболее важные соединения элементов главной подгруппы II группы (IIА группы) Периодической системы Д. И. Менделеева.
СаСO3 — карбонат кальция — одно из самых распространённых на Земле соединений. Вам хорошо известны такие содержащие его минералы, как мел, мрамор, известняк (рис. 56).
Мрамор — это минерал скульпторов, архитекторов и облицовщиков. Из него создавали свои прекрасные творения многие скульпторы (рис. 57). Стены всемирно известного индийского мавзолея Тадж-Махал выложены из мрамора (рис. 58), им же облицованы многие станции московского метро (рис. 59).
Однако самый важный из этих минералов — известняк, без которого не обходится ни одно строительство. Во-первых, он сам является прекрасным строительным камнем (вспомните знаменитые одесские катакомбы — бывшие каменоломни, в которых добывали камень для строительства города), во-вторых, это сырьё для получения других материалов: цемента, гашёной и негашёной извести, стекла и др.
Известковой щебёнкой укрепляют дороги, а порошком уменьшают кислотность почв.
Природный мел представляет собой остатки раковин древних животных. Один из примеров его использования — это школьные мелки, зубные пасты. Мел применяют в производстве бумаги, резины, побелки.
MgCO3 — карбонат магния, необходим в производстве стекла, цемента, кирпича, а также в металлургии для перевода пустой породы, т. е. не содержащей соединения металла, в шлак.
CaSO4 — сульфат кальция, встречается в природе в виде минерала гипса CaSO4 • 2Н2O, представляющего собой кристаллогидрат. Используют в строительстве, в медицине для наложения фиксирующих гипсовых повязок, получения слепков (рис. 60). Для этого применяют
полуводный гипс 2CaSO4 • Н2O — алебастр, который при взаимодействии с водой образует двуводный гипс:
Эта реакция идёт с выделением теплоты.
MgSO4 — сульфат магния, известный под названием горькая, или английская, соль, используют в медицине в качестве слабительного средства. Содержится в морской воде и придаёт ей горький вкус.
BaSO4 — сульфат бария, благодаря нерастворимости и способности задерживать рентгеновские лучи применяют в рентгенодиагностике («баритовая каша») для диагностики заболеваний желудочно-кишечного тракта (рис. 61).
Са3(РO4)2 — фосфат кальция, входит в состав фосфоритов (горная порода) и апатитов (минерал), а также в состав костей и зубов. В организме взрослого человека содержится более 1 кг кальция в виде соединения Са3(РO4)2.
Кальций имеет важное значение для живых организмов, это материал для постройки костного скелета. Он играет существенную роль в процессах жизнедеятельности: ионы кальция необходимы для работы сердца, участвуют в процессах свёртывания крови.
На долю кальция приходится более 1,5% массы тела человека, 98% кальция содержится в костях. Однако кальций необходим не только при формировании скелета, но и для работы нервной системы.
Человек должен получать в день 1,5 г кальция. Наибольшие количества кальция содержатся в сыре, твороге, петрушке, салате.
Магний также является необходимым биоэлементом, играя роль стимулятора обмена веществ, содержится в печени, костях, крови, нервной ткани и мозге. Магния в человеческом организме намного меньше, чем кальция, — всего около 40 г.
Магний входит в состав хлорофилла, а следовательно, участвует в процессах фотосинтеза. Без хлорофилла не было бы жизни, а без магния — хлорофилла, ведь в нём содержится 2% этого элемента.
Соли щёлочноземельных металлов окрашивают пламя в яркие цвета, поэтому эти соединения добавляют в составы для фейерверков (рис. 62).
Открытие магния и кальция. Магний был впервые получен Г. Дэви в 1808 г. из белой магнезии — минерала, найденного близ греческого города Магнезия. По названию минерала и дали название простому веществу и химическому элементу.
Полученный Г. Дэви металл был загрязнён примесями, а чистый магний получил француз А. Бюсси в 1829 г.
Кальций был впервые получен также Г. Дэви в 1808 г. Название элемента происходит от латинского слова кальс, что означает «известь, мягкий камень».
1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока — сделайте сообщение по ключевым словам и слово-сочетаниям следующего параграфа.
1. Массовая доля костей человека составляет 20% от общей массы организма. На долю фосфата кальция, входящего в состав костей, приходится также 20% от массы костей. Зная массу своего тела, рассчитайте, сколько килограммов фосфата кальция содержится в вашем организме. Сколько килограммов кальция содержится в нём?
2. Вспомните из курса анатомии, что такое гемофилия. Почему гемофиликам вводят при кровотечениях раствор хлорида кальция?
3. Вычислите количество вещества гашёной извести, которое может быть получено из 2 т известняка, содержащего 25% примесей.
4. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
Какие металлы главной подгруппы II группы (IIА группы) Периодической системы Д. И. Менделеева могут быть использованы для этих превращений, а какие — нет? Почему?
5. Напишите уравнения реакций для осуществления превращений:
Уравнение последней реакции запишите также в ионной форме.
6. Используя в качестве примера приведённое в предыдущем параграфе сочинение ученицы, напишите своё сочинение о химическом веществе или процессе, посвящённое химии щёлочноземельных металлов.
Напишите как был открыт магний и кальций
14.1. Общая характеристика элементов IA и IIA групп
В случае магния, кальция и стронция из-за малой растворимости образующихся гидроксидов реакция сопровождается образованием осадка:
M 2 

Щелочные металлы реагируют с большинством неметаллов:
2M + H2 = 2MH (при нагревании),
4M + O2 = 2M2O (M – Li),
2M + Cl2 = 2MCl (при обычных условиях),
2M + S = M2S (при нагревании).
Из щелочных металлов, сгорая в кислороде, обычный оксид образует только литий. Остальные щелочные металлы образуют пероксиды (M2O2) или надпероксиды (MO2 – соединения, содержащие надпероксид-ион с формальным зарядом –1 е).
Как и щелочные металлы, металлы элементов IIA группы реагируют со многими неметаллами, но при более жестких условиях:
M + H2 = MH2 (при нагревании; кроме бериллия),
2M + O2 = 2MO (при обычных условиях; Be и Mg – при нагревании),
M + Cl2 = MCl2 (при обычных условиях),
M + S = MS (при нагревании).
В отличие от щелочных металлов с кислородом они образуют обычные оксиды.
С кислотами спокойно реагирует только магний и бериллий, остальные простые вещества очень бурно, часто со взрывом.
Бериллий реагирует с концентрированными растворами щелочей:
Be + 2OH 

В соответствии с положением в ряду напряжений с растворами солей реагируют только бериллий и магний, остальные металлы в этом случае реагируют с водой.
Являясь сильными восстановителями, щелочные и щелочноземельные металлы восстанавливают многие менее активные металлы из их соединений, например, при нагревании протекают реакции:
4Na + MnO2 = 2Na2O + Mn;
2Ca + SnO2 = 2CaO + Sn.
Общий для всех щелочных металлов и металлов IIA группы промышленный способ получения – электролиз расплавов солей.
Кроме бериллия оксиды всех рассматриваемых элементов – основные оксиды, а гидроксиды – сильные основания (у бериллия эти соединения амфотерные, гидроксид магния – слабое основание).
Усиление основных свойств гидроксидов с увеличением порядкового номера элемента в группе легко прослеживается в ряду гидроксидов элементов IIA группы. Be(OH)2 – амфотерный гидроксид, Mg(OH)2 – слабое основание, Ca(OH)2, Sr(OH)2 и Ba(OH)2 сильные основания, но с увеличением порядкового номера растет их растворимость, и Ba(OH)2 уже можно отнести к щелочам.


2.По каким причинам водород помещают в IA группу, а по каким – в VIIA группу?
3.Составьте уравнения реакций следующих веществ с избытком кислорода: Li, Na, K, LiH, NaH, Li3N, Na2C2.
4.Кристаллы некоторого вещества состоят из однозарядных ионов. В состав каждого иона входит по 18 электронов. Составьте а) простейшую формулу вещества; б) сокращенные электронные формулы ионов; в) уравнение одной из реакций получения этого вещества; г) два уравнения реакций с участием этого вещества.
Натрий и калий – важнейшие щелочные элементы.
Простые вещества, образуемые этими элементами, – мягкие легкоплавкие серебристые металлы, легко режутся ножом, быстро окисляются на воздухе. Хранят их под слоем керосина. Температура плавления натрия 98 °С, а калия 64 °С.
Оксиды этих элементов типичные основные оксиды. Они очень гигроскопичны: поглощая воду, превращаются в гидроксиды.
Гидроксиды натрия и калия – щелочи. Это твердые бесцветные кристаллические вещества, плавящиеся без разложения. Как и оксиды, они очень гигроскопичны: поглощая воду, превращаются в концентрированные растворы. Как твердые гидроксиды, так и их концентрированные растворы – очень опасные вещества: при попадании на кожу вызывают труднозаживающие язвы, вдыхание их пыли приводит к поражению дыхательных путей. Гидроксид натрия (тривиальные названия – едкий натр, каустическая сода) относится к важнейшим продуктам химической промышленности – с его помощью создается щелочная среда во многих химических производствах. Гидроксид калия (тривиальное название – «едкое кали») используют для производства других соединений калия.
Большинство средних солей натрия и калия термически устойчивые вещества и разлагаются только при очень высоких температурах. При умеренном нагревании разлагаются только соли галогенсодержащих оксокислот, нитраты и некоторые другие соединения:
NaClO4 = NaCl + 2O2 ;
8NaClO3 = 6NaClO4 + 2NaCl;
2NaNO3 = 2NaNO2 + O2 ;
Na2[Zn(OH)4] = Na2ZnO2 + 2H2O .
Кислые соли менее устойчивы, при нагревании все они разлагаются:
2NaHS = Na2S + H2S ;
2NaHSO4 = Na2S2O7 + H2O ;
2NaHCO3 = Na2CO3 + H2O + CO2 ;
NaH2PO4 = NaPO3 + H2O ;
Na2HPO4 = Na4P2O7 + H2O .
Основных солей эти элементы не образуют.
Из солей наибольшее значение имеет хлорид натрия – поваренная соль. Это не только необходимая составная часть пищи, но и сырье для химической промышленности. Из него получают гидроксид натрия, питьевую соду (NaHCO3), соду (Na2CO3) и многие другие соединения натрия. Соли калия – необходимые минеральные удобрения.
Почти все соли натрия и калия растворимы, поэтому доступных качественных реакций на ионы этих элементов не. (Качественными реакциями называют химические реакции, позволяющие обнаружить в соединении атомы или ионы какого-либо химического элемента, доказав при этом, что обнаружен именно эти атомы или ионы, а не какие-нибудь другие, похожие на них по химическим свойствам. Также называют реакции, позволяющие обнаружить какое-либо вещество в смеси) Определить наличие в соединении ионов натрия или калия можно по окрашиванию бесцветного пламени при внесении в него исследуемого образца: в случае натрия пламя окрашивается в желтый цвет, а в случае калия – в фиолетовый.



Простые вещества магний и кальций – металлы. Кальций быстро окисляется на воздухе, а магний в этих условиях значительно устойчивее – он окисляется лишь с поверхности. Кальций хранят под слоем керосина. Температуры плавления магния и кальция – 650 и 851 °С соответственно. Магний и кальций значительно более твердые вещества, чем щелочные металлы. Невысокая плотность магния (1,74 г/см 3 ) при значительной прочности дает возможность использовать его сплавы в авиационной промышленности.
И магний, и кальций – сильные восстановители (особенно при нагревании). Их часто используют для восстановления других, менее активных, металлов из их оксидов (магний – в лаборатории, а кальций – в промышленности).
Магний и кальций – одни из немногих металлов реагирующих с азотом. При нагревании они образует с ним нитриды Mg3N2 и Ca3N2. Поэтому, сгорая на воздухе, магний и кальций превращаются в смесь оксидов с нитридами.
Кальций легко реагирует с водой, а магний – только при кипячении. В обоих случаях выделяется водород и образуются малорастворимые гидроксиды.
Оксиды магния и кальция – ионные вещества; по химическому поведению они – основные оксиды. Оксид магния с водой не реагирует, а оксид кальция (тривиальное название – «негашеная известь») реагирует бурно с выделением теплоты. Образующийся гидроксид кальция в промышленности называют «гашеной известью».
Гидроксид магния нерастворим в воде, тем не менее он является основанием. Гидроксид кальция заметно растворим в воде; его насыщенный раствор называют «известковой водой», это щелочной раствор (изменяет окраску индикаторов). Гидроксид кальция в сухом, а особенно во влажном состоянии поглощает углекислый газ из окружающего воздуха и превращается в карбонат кальция. Это свойство гашеной извести много веков использовалось в строительстве: гашеная известь как основной компонент входила в состав строительных известковых растворов, в настоящее время почти полностью замененных цементными. Оба гидроксида при умеренном нагревании, не плавясь, разлагаются.
Соли магния и особенно кальция входят в состав многих породообразующих минералов. Из этих горных пород наиболее известны мел, мрамор и известняк, основным веществом которых является карбонат кальция. Карбонаты кальция и магния при нагревании разлагаются на соответствующие оксиды и углекислый газ. С водой, содержащей растворенный диоксид углерода, эти карбонаты реагируют, образуя растворы гидрокарбонатов, например:
MCO3 + CO2 + H2O = M 2 

При нагревании, и даже при попытке выделить гидрокарбонаты из раствора, удаляя воду при комнатной температуре, они разлагаются по обратной реакции:
M 2 

+ CO2
+ H2O.
Гидратированный сульфат кальция CaSO4·2H2O представляет собой бесцветное кристаллическое вещество малорастворимое в воде. При нагревании оно частично обезвоживается, переходя в кристаллогидрат состава 2CaSO4·H2O. Тривиальное название двуводного гидрата – гипс, а полуводного – алебастр. При смешивании алебастра с водой он гидратируется, при этом образуется плотная твердая масса гипса. Это свойство алебастра используется в медицине (гипсовые повязки) и строительстве (армированные гипсовые перегородки, заделка дефектов). Скульпторы используют алебастр для изготовления гипсовых моделей и форм.
Карбид (ацетиленид) кальция CaC2. Структурная формула (Ca 2 



CaO + 3C = CaC2 + CO
Это ионное вещество не является солью и полностью гидролизуется водой с образованием ацетилена, который долгое время и получали таким способом:
CaC2 + 2H2O = C2H2 + Ca(OH)2.
Гидратированный ион магния [Mg(H2O)6] 2 
Кальций в соединении может быть обнаружен по окрашиванию пламени. Цвет пламени – оранжево-красный. Качественная реакция на ионы Ca 2 


M 2 

.

2.Составьте уравнения всех реакций, приведенных параграфе описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) кальция, б) оксида кальция, в) гидроксида магния, г) карбоната кальция, д) хлорида магния.

Природная вода в той, или иной степени содержит ионы растворимых солей. Если в пресной воде суммарная концентрация ионов Mg 2 




При нагревании жесткой воды из нее выделяются карбонаты магния и кальция, а при кипячении – еще и сульфаты. Образующийся плотный осадок часто называют «накипью». Именно он появляется на внутренних поверхностях чайников. В промышленности этот осадок образуется на стенках котлов, снижая их теплопроводность, и трубопроводов, уменьшая их внутренний диаметр.
При стирке в жесткой воде с использованием мыла его расход сильно возрастает, а качество стирки снижается, так как из раствора мыла (натриевых солей некоторых органических кислот) выделяются нерастворимые кальциевые и магниевые соли. При использовании синтетических стиральных порошков этот эффект не наблюдается.
Различают временную (карбонатную) жесткость, устраняемую кипячением, и постоянную (некарбонатную), сохраняющуюся после кипячения воды.
Устранение жесткости заключается в удалении из нее ионов Mg 2 

Временная жесткость устраняется кипячением.
Для устранения общей жесткости в воду добавляют различные реагенты:
1. Гашеную известь Ca(OH)2.
Ca 2 


+ H2O
Mg 2 



+ CaCO3
+ 2H2O
Mg 2 

2. Соду Na2CO3.
M 2 

3. Фосфат натрия Na2PO4.
3M 2 
= M3(PO4)2
Фосфаты кальция и магния менее растворимы, чем карбонаты. Поэтому применение фосфата натрия приводит к более полному устранению жесткости.
Современный способ устранения жесткости основан на применении ионообменных смол (ионитов). Иониты представляют собой полимерные кислоты RHn (катиониты) и полимерные основания R(OH)n (аниониты).
При пропускании растворов солей через трубки (ионообменники), заполненные зернами ионитов, протекают реакции, называемые реакциями ионного обмена: катиониты как бы обменивают свои атомы водорода на катионы (отсюда и их название), а аниониты – гидроксильные группы на анионы:
RHn + (n/2)M 2 

R(OH)n + nA 

Последовательно пропуская жесткую воду через ионообменник, заполненный катионитом, и ионообменник, заполненный анионитом, жесткость можно устранить полностью.
Таким способом можно очистить не только жесткую, но и морскую воду, что иногда и делается для ее опреснения. В промышленности иониты используют для получения чистой (деионизированной) воды вместо дистиллированной.




Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору
























