Главная » Правописание слов » Как написать алгоритм по информатике

Слово Как написать алгоритм по информатике - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Особенности понятия

Алгоритмы появились вместе с математикой, а первые упоминания о них встречаются в книге математика Мухаммеда бен Мусы аль-Хорезми из города Хорезма. Он описал методы выполнения различных действий с многозначными числами еще в 825 году. Само слово «алгоритм» появилось после того, как книгу ученого перевели на латинский язык в Египте.

Современное определение алгоритма в информатике — это описание действий, последовательное выполнение которых позволяет решить поставленную задачу за конкретное количество шагов.

С этим человек сталкивается каждый день, когда читает рецепты в кулинарных книгах, инструкции к различной технике, правила решения заданий. Но обычно все эти действия выполняются автоматически, без их анализа. Родители сталкиваются с этим понятием, когда объясняют детям, как открыть двери ключом или почистить зубы. Алгоритмов в окружающем мире множество, но есть общие признаки для всех их видов.

Свойства и виды

Для изучения понятия нужно разобраться в свойствах алгоритма в информатике. Их существует несколько:

Согласно свойству дискретности, алгоритмы должны описывать весь процесс решения задания в виде выполнения простых шагов. При этом на пункты отводится определенное количество времени. Каждый шаг должен определяться состоянием системы, то есть при одних и тех же исходных данных результат не меняется. Но есть и вероятностные алгоритмы, где пункты зависят от системы и случайно генерируемых чисел. В этой ситуации понятие становится подвидом обычного.

Понятность заключается в том, что команды алгоритма должны быть доступны конкретному исполнителю и входить в его личную систему. В ходе работы математическая функция при правильно заданных исходных данных выдает результат за определенное количество шагов. Иногда процедура может не завершиться, но вероятность таких случаев стремится к нулю.

Универсальность или массовость позволяет использовать алгоритм с разными наборами начальных данных. Последнее свойство обеспечивает его завершение в виде определенного числа — результата.

У каждого алгоритма есть свои начальные условия, цели и пути решения задачи. Существует большая разница между вычислительными и интерактивными видами. Происхождение первых связано с опытами ученого Тьюринга, они могут преобразовать входные данные в выходные. Вторые предназначены для связи с объектом управления, они работают только под внешним воздействием. Ученые выделяют несколько видов алгоритмов в информатике:

Жесткие еще называются механическими, так как чаще всего они используются для работы двигателя или машины. Они задают действия в единственно верной последовательности, что приводит к искомому или требуемому результату при условии выполнения процессов, для которых они и разработаны.

Гибкие алгоритмы делятся на эвристические и вероятностные. Первые используются при различных умственных выводах без строгих аргументов, а вторые дают возможность получить один результат несколькими способами.

Линейный тип — это набор команд, которые выполняются в строгой последовательности. Разветвляющийся включает хотя бы одно условие и при проверке дает разделение на несколько блоков. Появляются альтернативные ветвления программы.

В циклических видах несколько раз повторяются одни и те же действия, при этом меняются исходные данные. Сюда относятся переборы вариантов и бо́льшая часть способов расчета. Циклом в этом случае называют последовательность команд, которые нужно выполнить множество раз для достижения требуемого результата.

Подчиненный или вспомогательный вид является ранее разработанным алгоритмом для быстрого решения задачи. Он необходим для сокращения записи, если в структуре есть одинаковые команды. Схемами называются графические изображения с помощью блоков и соединяющих их прямых линий. Их используют перед программированием в качестве наглядных примеров, поскольку зрительное восприятие позволяет быстрее осмыслить процесс обработки информации и выявить возможные ошибки. В блоках отображаются исходные данные, которые вносятся в компьютер для вычислений.

Способы записи

Алгоритмы записываются несколькими методами. В информатике используется всего три:

В первом случае алгоритм записывается простым языком — словами и математическими формулами, что необходимо для понимания его теории. Здесь учитываются исходные данные, действия с ними и условия получения результата. Второй тип записи — компьютерное описание. Для этого применяются языки программирования и сами программы — форсы представления расчетов для их выполнения машиной.

Графическое описание состоит из связанных между собой географических фигур. Основные элементы блок-схем:

В прямоугольниках записывают процессы, они указывают на выполнение операций, которые изменяют форму или значение данных. Ромбы содержат способы решения, здесь выбирается следующее направление в зависимости от поставленных условий. Модификации могут передаваться в шестиугольниках, где записываются операции, меняющие команды.

В блок-схемах можно выделить ручной ввод и предопределенные процессы. Первая фигура позволяет исполнителю ввести данные во время работы алгоритма через устройства, подключенные к компьютеру. Второе понятие заключается в использовании заранее записанных алгоритмов.

Графическое изображение содержит блоки документов и дисплеев. Оператор может вводить данные с бумаги и выводить их на нее, а также с помощью устройств, которые воспроизводят информацию на экране (проекторы для интерактивных досок, подключенные к компьютерам планшеты и ноутбуки).

Линии и соединительные фигуры указывают на связи между разными блоками и их последовательность. В схеме есть блоки начала и конца алгоритма, его прерывания, которое может произойти из-за сбоев в программе. Можно также указывать комментарии и пояснения исполнителя, для этого есть отдельные фигуры.

Правила создания

Существует несколько правил создания алгоритмов. Если их соблюдать, то в ходе работы всегда будет верный результат. Форма должна быть настолько простой, чтобы ее понял тот, кто занимается ее разработкой. Также не должно возникнуть проблем с чтением у того, кто будет выполнять описанные действия.

Объект, который проводит расчеты в алгоритме, называется исполнителем. Идеальными считаются роботы, компьютеры и другие машины. Они работают с программами, то есть схемами, написанными определенным языком программирования.

Разобраться с действиями помогут простые примеры алгоритмов по информатике. Когда есть ряд чисел от 1 до 100 и необходимо найти из них простые, то выбираются те, что делятся на единицу и себя. В этом случае используется циклическая структура:

Такие действия проводят со всеми числами. При этом первые четыре шага будут постоянно повторяться. Если попадается число, не являющееся простым (4, 6, 8 и т. д. ), то его нужно просто пропустить. Алгоритм в этом случае обладает предусловиями, то есть проверки происходят в начале цикла.

Анализ работы

Распространение информационных технологий привело к увеличению риска сбоев в работе программ. Предотвратить появление ошибок в алгоритмах можно с помощью доказательства их корректности математическими средствами. Такой анализ называется формальным методом, он предусматривает использование специального набора инструментов.

Гипотеза Ричарда Мейса утверждает, что избежать ошибок легче, чем их устранить. Благодаря доказательству корректности программ можно выявить их свойства, применяемые ко всем видам входных данных. Само понятие делится на две разновидности — частичную и полную. При первом типе корректности алгоритм дает правильный результат только для тех случаев, когда он завершается. Во втором случае программа завершает работу корректно для всего диапазона данных.

Исполнители во время проверки сравнивают выдаваемые данные со спецификой требуемого результата. Для доказательства корректности используются предусловия и постусловия. Первые должны выполняться перед включением программы, вторые — после завершения ее работы. Формальные методы успешно применяются для многих задач: верификации программ и микропроцессоров, разработки искусственного интеллекта, электронных схем и автоматических систем для железной дороги, спецификации стандартов.

Для выполнения алгоритма нужно только конкретное количество шагов, но на практике для этого потребуется много времени. В связи с этим введено понятие сложности. Она бывает временной, вычислительной и связанной с размерами алгоритма. Для увеличения эффективности используются быстрые программы, которые появились еще в 50-х годах прошлого века.

Источник

Как написать алгоритм по информатике

Данный материал представляет собой справочное руководство по составлении алгоритмов, которые являются необходимой составной частью контрольной и курсовой работы по дисциплине «Информатика».

Изложенный материал не претендует на полноту охвата всех сторон проблемы алгоритмизации при решении задач, возникающих на практике. Однако его вполне достаточно для того, чтобы разобраться и выполнить ту часть названных работ, которая необходима для составления алгоритмов и их описания.

Опыт показывает, что трудности, возникающие при составлении алгоритмов имеют как общий характер, когда студент не может уяснить принцип работы алгоритма вообще, так и частный, когда непонятным оказывается отдельный фрагмент алгоритма.

В любом случае рекомендуется обратить внимание на следующее. Разбирая или составляя алгоритм, нужно мысленно представить некоторый автомат по обработке данных (компьютер), который будет выполнять действия, предписанные этим алгоритмом. Без такого представления невозможно понять сам алгоритм. Ниже, при разборе примеров, станет понятно, что такой мысленный автомат совсем несложен. Во всяком случае он несравнимо проще реального компьютера, хотя общие принципы их функционирования в основном одинаковы. Допустимо (например, при составлении описания) отождествлять работу такого автомата с работой самого алгоритма.

1. Алгоритм и алгоритмизация

Алгоритм – это инструкция о том, в какой последовательности нужно выполнить действия при переработке исходного материала в требуемый результат. [ последователь­ность точных предписаний, понятных исполните­ лю (компьютеру, роботу и пр.), совершить последо­ вательность действий, направленных на достиже­ ние конкретного результата. ]

Часто алгоритм используется не как инструкция для автомата, а как схема алгоритмического решения задачи. Это позволяет оценить эффективность предлагаемого способа решения, его результативность, исправить возможные ошибки, сравнить его еще до применения на компьютере с другими алгоритмами решения этой же задачи. Наконец, алгоритм является основой для составления программы, которую пишет программист на каком-либо языке программирования с тем, чтобы реализовать процесс обработки данных на компьютере.

На практике получили известность два способа изображения алгоритмов:

в виде пошагового словесного описания;

Первый из этих способов получил значительно меньшее распространение из-за его многословности и отсутствия наглядности. Второй, напротив, оказался очень удобным средством изображения алгоритмов и получил широкое распространение в научной и учебной литературе. Именно этот способ будет использован ниже при составлении и описании алгоритмов.

2. Блок-схема и ее элементы

Блок-схема – это последовательность блоков, предписывающих выполнение определенных операций, и связей между этими блоками. Внутри блоков указывается информация об операциях, подлежащих выполнению. Конфигурация и размеры блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19002-80 и ГОСТ 19003-80 «Схемы алгоритмов и программ».

В табл. 1 приведены наиболее часто используемые блоки, изображены элементы связей между ними и дано краткое пояснение к ним. Блоки и элементы связей называют элементами блок-схем.

Представленных в таблице элементов вполне достаточно для изображения алгоритмов, которые необходимы при выполнении студенческих работ.

При соединении блоков следует использовать только вертикальные и горизонтальные линии потоков.

Горизонтальные потоки, имеющие направление справа налево, и вертикальные потоки, имеющие направление снизу вверх, должны быть обязательно помечены стрелками.

Прочие потоки могут быть помечены или оставлены непомеченными.

Линии потоков должны быть параллельны линиям внешней рамки или границам листа

Название

Элемент

Комментарий

Вычислительное действие или последовательность вычислительных действий

Обращение к процедуре

Вывод данных, печать данных

Разрыв линии потока

Начало, конец, пуск, останов, вход и выход во вспомогательных алгоритмах

Используется для размещения надписей

Горизонтальные и вертикальные потоки

Линии связей между блоками, направление потоков

Слияние линий потоков

Горизонтальный и вертикальный размеры блока должны быть кратны 5 мм (делиться на 5 нацело). Отношение горизонтального и вертикального размеров блока b/а = 1.5 является основным. При ручном выполнении блока допустимо отношение b/а = 2.

Блоки «Начало», «Конец» и «Соединитель» имеют высоту а/2, т. е. вдвое меньше основной высоты блоков.

Для размещения блоков рекомендуется поле листа разбивать на горизонтальные и вертикальные (для разветвлявшихся схем) зоны.

Для удобства описания блок-схемы каждый ее блок следует пронумеровать. Удобно использовать сквозную нумерации блоков. Номер блока располагают в разрыве в левой верхней части рамки блока.

По характеру связей между блоками различают алгоритмы линейной, разветвляющейся и циклической структуры.

Примеры, пояснявшие изложенное, можно найти в блок-схемах алгоритмов, которые будут приведены ниже.

3. Константы, переменные и ячейки памяти

Для того чтобы ясно представить как «работает» алгоритм, опишем простейший автомат, который предназначен для выполнения операций, предписанных этим алгоритмом.

В состав такого автомата входят:

память, состоящая из отдельных ячеек;

процессор, т. е. устройство, способное выполнять операции, в том числе математические, и отдавать головке указания читать данные из ячеек или записывать данные в ячейки памяти автомата.

В простейшем случае константой является любое арифметическое число. Например, 12, 0.78, 0, –45.33 и т. д. ( Константами могут быть такие строки символов, структуры данных и др.).

Запись вида L = M следует понимать так: прочитать константу, расположенную по адресу M и скопировать эту константу в ячейку с адресом L (при этом константа из ячейки M не удаляется, а остается такой, какой она была до чтения). Произносить эту запись нужно так: «переменной L присвоить значение переменной M (или просто: L присвоить M)».

4. Массивы

Одномерный массив – это последовательность ячеек, расположенных в одну линию. На рис. 1 приведен пример такого массива.

Двумерный массив по расположению ячеек напоминает математическую матрицу ( рис. 2 ). Элемент такого массива характеризуется двумя индексами: первый показывает строку, в которой расположена ячейка, второй – ее столбец. Например, команда d 2, 5 = 43 означает, что в ячейку, размещенную на пересечении 2-й строки и 5-го столбца двумерного массива d, нужно записать константу 43.

Аналогично устроена структура массивов трех- и большей размерности.

5. Линейные алгоритмы

Линейный алгоритм – это алгоритм, в котором блоки выполняются последовательно сверху вниз от начала до конца.

На рис. 3 приведен пример блок-схемы алгоритма вычисления периметра Р и площади S квадрата со стороной длины A.

Рис. 3. Линейный алгоритм

Блок-схема алгоритма состоит из шести блоков. Выполнение алгоритма начинается с блока 1 «Начало». Этот блок символизирует включение автомата, настройку его на выполнение алгоритма и выделение памяти под все переменные, которые задействованы в алгоритме. В алгоритме рис. 3 таких переменных три: A, Р, S. Следовательно, под каждую из них алгоритмом будет выделено по одной ячейке памяти. На этом блок 1 будет отработан.

Как видно из рис.3, блок 1 связан вертикальной линией потока с блоком 2. Эта линия не имеет стрелки, указывавшей направление потока. Следовательно, этот поток направлен вниз. Таким образом, после выполнения блока 1 управление будет передано на блок 2. Блок 2 «Перфокарта» ( см. табл. 1) показывает, что переменной A следует присвоить значение. Это означает, что в ячейку, отведенную автоматом под эту переменную, нужно поместить константу. На реальной компьютере эта константа может быть введена самыми разными способами. Способ зависит от того, как запрограммирован данный фрагмент. Можно, например, потребовать ввод константы с клавиатура или получить его из заранее подготовленного файла. Возможно эта константа будет получена через внешние источники данных, например, от физической установки, подключенной к компьютеру.

Для данного примера способ передачи константы не имеет значения, важно лишь то, что при выполнении блока 2 в ячейку с адресом А будет занесена конкретная константа. Пусть такой константой является число 5.

Далее управление по линии потока передается к блоку 3 «Процесс». В этом блоке при выполнении размещенной в ней команды число 4 умножается на константу, помещенную в ячейку А (т. е. 5), и результат (т. е. 20) присваивается переменной Р (т. е. константа 20 записывается в ячейку по адресу Р). После выполнения этих операций управление передается к блоку 4.

В блоке 4 аналогичным образом производится умножение значений переменной А и результат (константа 25) присваивается переменной S (в ячейку по адресу S будет занесена константа 25). После этого выполняется переход к блоку 5.

При выполнении команд блока 5 выводятся (например, на экран, бумагу, во внешний файл и т. д.) значения переменных А, Р, S, которые сохранились в соответствующих ячейках к этому моменту. Понятно, что для конкретного примера А = 5 будут выведена константы 5, 20, 25, т. е. длина сторона квадрата, его периметр и площадь. Далее управление передается последнему блоку 6.

В блоке б “Конец” производится освобождение ячеек памяти, которые были зарезервированы под переменные А, P, S, и алгоритм заканчивает работу.

Понятно, что при новом запуске этого же алгоритма можно получить совсем другие числа. Так, если в блоке 2 переменной А присвоить значение 20, то алгоритм выдаст в блоке 5 константы 20, 80, 400.

Детальное описание алгоритма рис. 3 приведено для того, чтобы показать, в какой последовательности автомат выполняет предписанные операции и как при этом меняется состояние памяти автомата, т. е. для того, чтобы объяснить суть происходящих в автомате процессов. Из сказанного нужно уяснить, что автомат выполняет предписанную ему работу шаг за шагом. Всякий шаг обрабатывается процессором. Помимо вычислений процессор при необходимости отдает команды считывавшей/записывавшей головке, что и куда записывать, откуда читать. Конечный результат следует искать в ячейках памяти, каждая из которых до окончания алгоритма имеет известный адрес и хранит записанную в нее константу.

При выполнении контрольной или курсовой работы нет нужды давать столь подробное описание алгоритма. Тем не менее, описание должно быть выполнено с той степенью полноты, которая позволяет дать ясное представление о всех сторонах и особенностях алгоритмического процесса.

6. Разветвляющиеся алгоритмы

На практике алгоритмы линейной структуры встречается крайне редко. Чаще необходимо организовать процесс, который в зависимости от каких-либо условий проходит по той либо иной ветви алгоритма. Такой алгоритм называется разветвляющимся.

В блок-схемах ветвление начинается на выходах элемента «Решение», с помощью которого в алгоритме выполняется проверка какого-либо условия. Количество ветвей тем больше, чем больше проверяемых условий.

Для пояснения рассмотрим решение задачи нахождения значения функции z = y/x.

На первый взгляд представляется, что алгоритм решения этой задачи имеет линейную структуру. Однако, если учесть, что делить на нуль нельзя из-за переполнения ячейки, то, во-первых, нужно из вычислений исключить вариант х = 0 и, во-вторых, проинформировать пользователя алгоритма о возникшей ошибке. Если этого не сделать, то при вычислениях может возникнуть аварийный выход до получения результата. В профессиональной практике аварийные завершения крайне нежелательны. т. к. к этому моменту уже может быть накоплено определенное количество результатов, которые окажутся необработанными и попросту пропадут. Можно привести другие примеры, когда аварийный останов компьютера может повлечь куда более серьезные последствия.

Решение задачи представлено блок-схемой рис. 4.

Рис. 4. Разветвляющийся алгоритм

Она состоит из 7 блоков. После начала работы алгоритм в блоке 2 требует ввода аргументов X и Y. Затем в блоке 3 производится проверка условия X = 0. Здесь автомат проверяет равна ли нули константа, введенная в ячейку с адресом X. Результатом такой проверки является ответ «Да» или «Нет». В зависимости от этого ответа выполнение алгоритма пойдет по одной или другой ветви. Если результат проверки окажется отрицательным, то на х можно делить и управление передается блоку 4.

В блоке 4 будет получен результат Z, затем в блоке б значения всех трех переменных будут отпечатаны и в блоке 7 алгоритм закончит работу. Если же ответ окажется положительным, то управление будет передано блоку 4. Выполняя команду блока 4, автомат выведет сообщение «Ошибка» и затем закончит работу в том же блоке 7.

7. Циклические алгоритмы

Различают циклы с наперед известным и наперед неизвестным количеством проходов.

Рис. 5. Разветвляющийся алгоритм

Блок-схема алгоритма решения этой задачи приведена на рис. 5. Она состоит из восьми блоков.

После начала работы в блоке 2 вводится значение числа К. Далее в блоке 3 переменная i получает значение 1, т. е. значение, с которого начнется отсчет натуральных чисел. Переменная S, предназначенная для накопления сумма этих чисел, перед началом суммирования получает значение 0. После этого управление передается блоку 5.

В нем при выполнении команды S = S + i производится сложение содержимого ячеек S и i, а результат записывается в ячейку S. Поскольку до операции сложения было S = 0, i = 1, то после операции будет S = 1. При записи нового значения старое содержимое ячейки S (нуль) стирается, а на его место записывается число 1.

Нужно обратить внимание на то, что если бы до этой операции в блоке 3 не была выполнена команда S = 0 (записать нуль в ячейку S ), то при нахождении суммы S + 1 возникла бы ошибка, поскольку из ячейки S была бы извлечена константа, которая оказалась там после распределения памяти.

После суммирования первого члена последовательности в блоке 6 выполняется проверка условия о превышении суммы S заданного числа К.

Если условие 6 не выполнится, то производится переход к блоку 4, где при выполнении операции значение переменной увеличивается на 1 и становится равным 2. Теперь алгоритм вновь вернется к блоку 5 и к старому значении суммы добавит новый член 2. После этого сумма станет равной 3. В блоке б вновь проверяется условие получения требуемой суммы и т. д. Цепочка блоков 5-4 будет обрабатываться вновь и вновь до того момента, когда однажды при определенном значении переменной i, наконец, выполнится условие S > К, т. е. когда накапливаемая в таком цикле сумма впервые превысит заданное значение К. Переменная i, значение которой при очередном проходе цепочки этих блоков увеличивается на 1, играет роль счетчика этого цикла.

Далее производится переход к блоку 7, где отпечатается значение количества членов ряда (извлечено и отпечатано число из ячейки i, которое там хранится в момент выполнения условия), суммы S и в блоке 8 алгоритм закончит работу.

Пример 2. Теперь приведем пример алгоритма, содержащего цикл с наперед известным количеством проходов (повторений). Алгоритм решает задачу накопления суммы положительных элементов одномерного массива Z длины N ( под длиной массива понимается количество его элементов ). Блок-схема алгоритма дана на рис. 6.

Рис. 6. Циклический алгоритм

Вначале в блоке 2 производится ввод двух переменных N и Z. Первая из них представляет одну ячейку. В нее записывается одна константа – число, равное количеству элементов массива Z. Именно такое количество ячеек объединяет другая переменная – Z.

Следует подчеркнуть, что если бы ввод этих переменных в блоке 2 производился в противоположном порядке, то это привело бы к ошибке. Действительно, невозможно заполнить N ячеек массива Z, когда самое N еще не известно (оно будет введено позже Z). Далее в блоке 3 переменной S присвоено начальное значение 0. Это сделано для того, чтобы приготовить ячейку к дальнейшему накоплению необходимой суммы.

Блоки 4-6 представляет собой сам цикл, в котором накапливается сумма.

Для того чтобы понять, как функционирует не только этот, а и любой другой цикл, обратимся к рис. 7, 8. На них показана общая структура цикла и его важнейшие параметры.

Как видно из рис. 7, цикл состоит из заголовка и тела. Всякий цикл обязательно имеет свой счетчик.

На рис. 8, где показана структура и параметры заголовка цикла, роль такого счетчика выполняет переменная i. Внутри заголовка после счетчика и символа «=» через запятую указывает начальное и конечное значения счетчика и шаг его изменения (на рис. 8 их роль выполняют переменные j, k, l соответственно). Если значение шага l = l, то его можно не указывать.

Сначала производится вход в цикл. После этого начинается его выполнение.

Рис. 7. Структура цикла Рис. 8. Структура заголовка цикла

Внутри заголовка счетчику первоначально присваивается значение i = j. Затем выполняется блоки, образующие тело цикла. Обработка блоков внутри цикла производится по часовой стрелке. В результате после первого выполнения тела цикла управление вновь передается заголовку. Здесь к текущему значению счетчика добавится шаг. Теперь, если новое значение счетчика не вышло за свои пределы (т. е. не стало больше своего конечного значения при положительном шаге или меньше конечного значения – при отрицательном шаге), то снова выполняется тело цикла, вновь после возврата к заголовку к счетчику добавляется шаг. Так цикл будет выполняться до тех пор, пока значение счетчика однажды не выйдет за предписанный предел. Как только такой предел будет преодолен, произойдет выход из цикла и управление будет передано блоку, который следует сразу за циклом.

Вернемся к блок-схеме рис. 6. Заголовок ее цикла представлен блоком 4. Роль счетчика цикла играет переменная i, которая должна в цикле изменяться от 1 до N. Поскольку шаг явно не указан, то по умолчанию он подразумевается равным 1. Тело цикла образуют блоки 5 и 6.

Сразу после входа в цикл переменная i примет начальное значение i = 1. Далее в блоке 5 выполняется проверка положительности первого элемента массива Z (т. к. i = 1). Если этот элемент действительно положителен, то в блоке б он будет добавлен к переменной S, после чего выполняется возврат к заголовку цикла. Если этот элемент не положителен (т. е. нуль или отрицательный), то будет выполнен переход сразу к заголовку цикла, минуя блок суммирования 6.

На втором круге цикла счетчик i в заголовке увеличится на 1 и станет равным 2. Теперь, при новом выполнении тела цикла, в блоке 5 проверяется на положительность второй элемент массива Z и, если он положителен, то добавляется в сумму и т. д. Последний раз тело цикла выполнится при i = N. При этом значении счетчика проверяется последний элемент массива. Наконец, в заголовке цикла i примет значение N+1. Это значение выходит за предписанный предел, следовательно, произойдет выход из цикла и управление перейдет блоку 7. В этом блоке выводится накопленная сумма и алгоритм закончит работу.

8. Алгоритмы со структурами вложенных циклов

Рис. 9. Алгоритм сортировки массива

Отметим, что все вложенные друг в друга циклы, включая наружный, должны иметь счетчики с различными именами. Вне этих циклов счетчики могут быть использованы как обычные переменные или как счетчики других циклов.

Пример 1. Рассмотрим задачу сортировки одномерного массива Z длины N. Отсортировать массив – значит расположить его элементы в порядке роста или убывания.

Опишем метод сортировки массива в порядке роста. Сначала выполняется проход по массиву с целью определения в нем наименьшего элемента. Затем производится перестановка этого элемента с первым. Далее совершается второй проход по массиву, начиная со второго элемента. Найденный наименьший элемент переставляется со вторым и т. д. После (N-1)-го прохода с выполнением названных операций массив окажется отсортированным.

Блок-схема этого алгоритма сортировки показана на рис. 9. Она включает 12 блоков. После начала работы в блоке 2 переменная N и массив Z заполняются константами. Затем в блоке 3 проверяется условие о том, нужно ли сортировать массив.

Это сводится к установлению факта наличия в массиве нескольких элементов, т. к. массив из одного элемента всегда отсортирован. Если этот факт установлен, то алгоритм приступает к сортировке. Процедура сортировки выполняется в цикле, объединяющем блоки 4-10. В теле этого цикла содержится другой цикл, который образован блоками 6-8. Его назначение станет ясно из дальнейшего разбора алгоритма.

После входа в наружный цикл его счетчик i примет значение 1, что в рамках нашего метода подразумевает первый проход по массиву.

Далее будут выполнены блоки 5-10, составляющие тело наружного цикла. В блоке 5 размещены две вспомогательные переменные V и L. Первая из них предназначена для фиксирования наименьшего элемента, а вторая – для запоминания его индекса. Так как i = 1, то при первом проходе в блоке 5 V примет значение первого элемента, а L значение 1. Затем во внутреннем цикле, образованном блоками 6-8, где его счетчик j будет изменяться от 2 до N, последовательно проводится сравнение соответствующих элементов массива Z со значением переменной V. При этом всякий раз, как будет найден меньший чем v элемент, значение V будет заменено на значение этого элемента, а в переменной L будет зафиксирован его индекс. Понятно, что после выполнения внутреннего цикла в переменной V будет содержаться значение, равное наименьшему элементу, а в L – индекс этого элемента. В блоке 9 далее проверяется, не является ли наименьший элемент первым элементом массива. Если это не так, то в блоке 10 на место наименьшего элемента (его номер L) запишется первый (т. к. при первом проходе L =1 ), а на место первого элемента – наименьший (он равен V). После этого произойдет возврат управления к заголовку наружного цикла блоку 4. В нем значение счетчика станет равным i = 2.

Затем вновь выполняется его тело, но уже для нового значения счетчика i. Теперь с помощью блоков 5-10 отыскивается наименьший элемент массива начиная с номера 2. Затем в блоках 9-10 он займет второе место в массиве и т. д. Когда тело наружного цикла выполнится (N-1), раз массив будет отсортирован.

В блоке 12 отсортированный массив будет выведен и в блоке 13 алгоритм окончит работу.

Алгоритмы со структурами вложенных циклов часто используют при решении задач обработки двумерных массивов. В таких алгоритмах счетчики циклов используются для манипуляции с индексами массивов.

Пример 2. Дан двумерный квадратный массив Z, состоящий из N строк и N столбцов. Необходимо найти среднее арифметическое S его отрицательных элементов и заменить положительные элементы побочной диагонали массива средним арифметическим S.

Рис. 10. Блок-схема алгоритма

Блок-схема алгоритма показана на рис. 10. Она состоит из 13 блоков. В блоке 2 переменная N и весь массив Z заполняются константами. В блоке 3 рабочие переменные S и К получает значение нуль. Переменная S сначала будет играть роль сумматора отрицательных элементов массива, затем после накопления суммы она примет значение среднего арифметического. Переменная К нужна для подсчета количества отрицательных элементов массива.

В блоках 4-7 выполняется накопление суммы отрицательных элементов массива.

Эти блоки образует два вложенных цикла, причем внутренний цикл со счетчиком j является телом наружного цикла со счетчиком i. Проанализируем работу этой структуры.

После входа в наружный цикл в блоке 4 переменная i примет значение i = 1. Далее будет выполнено его тело ( блоки 5-7 ), которое, в свою очередь, также является циклом. После входа во внутренний цикл в блоке 5 переменная j примет значение j = 1. Затем в блоке 6 проверяется на отрицательность элемент массива Z, расположенный в первой строке и первом столбце, т. к. i = 1 и j = 1.

Если он окажется отрицательным, то в блоке 7 переменная К увеличится на 1, а к S добавляется значение этого элемента. После этого выполняется возврат к блоку 5, т. е. к заголовку внутреннего цикла. Здесь j увеличится на 1, станет равной j = 2 и управление перейдет к блоку 6. В нем проверяется элемент, стоящий все в той же первой строке, но во втором столбце (i = 1, j = 2). Если он окажется отрицательным, то К снова увеличится на 1, а к накопленному к этому времени S добавляется значение этого элемента и т.д. Когда полностью выполнится внутренний цикл, т. е. переменная j «пробежит» от 1 до N, в переменную S накопится сумма всех отрицательных элементов первой строки массива, а в К – их количество. Теперь управление передается к блоку 4 заголовка наружного цикла, где i станет равной i = 2. Снова будет отработано его тело, т. е. цикл 5-7. При этом будет найдена уже сумма отрицательных элементов первых двух строк массива, а в К сохранится количество этих элементов. Когда выполнится весь наружный цикл, в S будет константа, равная сумме отрицательных элементов всего массива, а в К – их количество. Теперь управление перейдет к блоку 8. Если окажется, что в массиве есть отрицательные элементы (К>0), то в блоке 9 вычисляется среднее арифметическое как отношение суммы элементов к их количеству. Результат помещается а ту же переменную S. Отметим, что если бы блок 8 проверки отсутствовал, то при К = 0 (в массиве нет ни одного отрицательного элемента) в блоке 9 из-за деления на нуль возникла бы ошибка. Эта ошибка повлекла бы аварийное завершение вычислений до окончания работы алгоритма.

Далее выполняется блоки 10-11, которые также образует цикл. В нем производится замена элементов побочной диагонали на среднее арифметическое S (побочной диагональю является прямолинейная цепочка ячеек в диапазоне от нижнего левого угла до верхнего правого угла массива). Обратите внимание, на то что переменная i, которая использовалась ранее, в целях экономии памяти применяется вновь.

Проследим работу этого цикла. После входа в блок 10 счетчик примет значение i = 1. Затем в блоке 11 при этом значении будет вычислен индекс столбца элемента N – 1 + i = N. Таким образом, элемент с индексами (1, N) станет равным S. На втором круге цикла i увеличится на 1 и станет i = 2. Нетрудно видеть, что теперь элемент (2, N-1) станет равным S и т. д. На последнем круге цикла элемент (N, 1) получит значение S, что завершит изменение значений всех элементов побочной диагонали на среднее арифметическое S.

Наконец, в блоке 12 измененный массив будет выведен и в блоке 13 алгоритм закончит работу.

9. Вспомогательные алгоритмы

Формальные параметры должны быть выбраны таким образом, чтобы ими был исчерпан весь набор необходимых входных и выходных величин. Нередко один и тот же параметр может оказаться входным и выходным одновременно. Например, на вход такого алгоритма может быть подан массив для обработки, а на выходе процедуры он может предстать в измененном виде как выходной параметр.

Рис. 11. Процедура Warn

Первый блок схемы рис. 11 в отличие от ранее рассмотренных примеров, где этот блок имел наименование “Начало”, включает имя процедуры Warn и один формальный параметр i. С помощью этого имени в алгоритме рис. 12 выполняется обращение именно к этой процедуре.

Из схемы видно, что если на вход процедуры Warn подать i = 0, то она в блоке 3 выдаст сообщение «Введите данные». При любом другом i будет выведено сообщение «Конец расчетов». Этим исчерпываются возможности процедура Warn.

На рис. 12 дана схема головного алгоритма ( первый блок имеет наименование «Начало» ). Этот алгоритм в блоках 2 и 8 обращается к процедуре Warn.

Опишем последовательность и механизм обработки данных, которые предписаны алгоритмами рис. 11 и 12.

Рис. 12. Головной алгоритм

Выполнение алгоритмических действий всегда начинаются с головного алгоритма. Поэтому сначала будет выполнен блок 1 схемы рис. 12. Далее в блоке 2 головной алгоритм выполняет обращение к процедуре Warn при конкретном значении ее аргумента (0). Это конкретное значение называется фактическим параметром процедуры.

Теперь управление временно переходит в алгоритм рис. 11 процедуры Warn. Здесь и далее по всей процедуре Warn формальный параметр i заменяется на фактический параметр 0 (нуль) всюду, где он встречается.

Далее обрабатывается блок 2 процедуры, где с учетом сказанного проверяется условие 0 = 0. Результатом проверки станет перевод управления к блоку 3, в котором выводится сообщение «Введите данные». На этом процедура заканчивается и управление вновь передается в головной алгоритм к блоку 3.

Далее в блоках 3-5 алгоритма рис. 12 выполняются уже понятные действия по вводу, суммированию и выводу переменных. Затем управление передается в блок б, который содержит новое обращение к процедуре Warn с фактическим параметром 1.

Снова управление переключается на схему рис. 11, где вместо формального параметра i всюду записывается фактический параметр – константа 1. Поскольку в блоке 2 условие 1 = 0 не выполнится, то будет выполнен блок 4 и алгоритм выведет сообщение «Конец расчетов». После этого управление возвращается в головной алгоритм к блоку 7, где и будет окончательно завершен алгоритмический процесс.

Внешне такой процесс может выглядеть примерно так. На экран выводится сообщение «Введите данные» и компьютер переходит в режим ожидания ввода двух констант с клавиатуры. Затем после их ввода на экране появляется три константы и надпись «Конец работы». На первый взгляд может показаться, что процедуры лишь усложняют решение задачи. Действительно, рассмотренную здесь задачу проще решить одним алгоритмом, не прибегая к составление процедуры. Однако при составлении алгоритма решения сложной задачи очень быстро становится ясно, что без использования процедур обойтись просто невозможно. На практике при решением серьезных алгоритмических задач часто одному программисту не под силу выполнить весь объем работ. Поэтому над ее решением работает обычно коллектив программистов под руководством координатора. Образно говоря, координатор здесь работает как головной алгоритм, а его программисты как процедуры. При этом каждый программист (часто независимо от других) получает от координатора задание по составление процедур определенного назначения. В результате такой организации работы задача получает разрешение.

10. Декомпозиция алгоритма

Под декомпозицией алгоритма понимают разложение его o6щeй алгоритмической схемы на вспомогательные алгоритмы (процедуры и функции) и головной алгоритм. Напомним, такая задача ставится перед студентом при выполнении курсовой или контрольной работы. Одним из условий, которое должно быть обязательно выполнено, является наличие в работе хотя бы одной процедуры или функции (кроме того, работа должна содержать текст описания всех процедур и головного алгоритма).

Метод, при помощи которого обычно выполняется декомпозиция, достаточно прост. Сначала вычленяют основные этапы предстоящей работы. Наиболее сложные этапы оформляет в процедуры или функции верхнего уровня. Затем, если необходимо, такие этапы делят на этапы более низкого уровня. Наиболее сложные из них также оформляют процедурами или функциями и т. д. Следуя методу «от сложного к простому», в конечном итоге достигают решения поставленной задачи. Приведем пример декомпозиции для решения задачи сортировки массива. Эта задача была решена ранее в разд. 8 (рис. 9) без использования вспомогательных алгоритмов. Решение задачи декомпозиции состоит из трех основных этапов: 1) ввода данных, 2) сортировки массива и 3) вывода отсортированного массива. Первый и третий этапы вследствие их простоты не нуждаются в дальнейшей декомпозиции, поэтому выполняются в головном алгоритме. Второй этап представляет достаточно сложный и самостоятельный фрагмент вычислений, поэтому его целесообразно выделить в отдельную процедуру, которой можно дать имя Sort.

Этап сортировки, в свои очередь, состоит из двух этапов: 1) установления необходимости сортировки и (N–1) – кратного прохода по массиву и 2) нахождения наименьшего элемента во фрагменте массива и перестановки этого элемента с начальным элементом фрагмента. Поскольку последний этап многократно повторяется при выполнении первого этапа, то его можно оформить в отдельную процедуру. Этой процедуре можно дать имя Tra (от английского transposition – перестановка). Блок-схемы головного алгоритма, процедуры Sort и процедуры Тrа показаны на рис. 13-15 соответственно.

Рис. 13. Головной алгоритм Рис. 14. Процедура Sort

Дадим краткое, описание взаимодействия этих алгоритмов в ходе решения задачи сортировки.

Рис. 15. Процедура Tra

Выполнение начинается с головного алгоритма (рис. 13). В блоке 2 вводятся исходные данные, затем в блоке 3 выполняется сортировка массива. В блоке 4 отсортированный массив выводится и алгоритм заканчивает работу. Сортировка массива в блоке 3 головного алгоритма выполняется обращением к процедуре Sort, показанной на рис. 14. Переменные A и N являются фактическими параметрами, Переменные А и N, которые использованы в блок-схеме алгоритма Sort, является формальными параметрами.

При обращении к процедуре Sort на вход подаются параметры A и N. В результате в теле процедуры производится замена формального параметра R на фактический параметр A, аналогично формальный K заменяется на фактический N.

Далее в блоке 2 проверяется необходимость сортировки массива R. Затем, если такая необходимость будет установлена, в цикле 3-4 будет выполняется сортировка массива. При всяком значении счетчика цикла в его теле производится нахождение наименьшего элемента фрагмента и его перестановка с начальным элементом этого фрагмента. Эти операции выполняются отдельно с помощью процедуры Tra. Как видно из рис. 15, на вход процедуры Tra нужно подать имя массива (A), количество элементов (N) и номер элемента (i), которым начинается фрагмент. В теле процедуры в блоках 2-5 отыскивается наименьший элемент фрагмента (v) и его номер (k). Затем в блоке 6 выполняется вышеназванная перестановка элементов.

Таким образом, весь процесс управляется головным алгоритмом, который выполняет сортировку посредством обращения к вспомогательному алгоритму – процедуре Sort.

Тот, реализуя решение своей задачи, в своя очередь несколько раз вымывает еще более простой вспомогательный алгоритм процедуру Tra. В результате такого взаимодействия достигается решение задачи в целом.

Рис. 16. Функция Fact

Ее блок-схема показана на рис. 16. Переменная К используется для накопления произведения и, поскольку 0! = 1 и1! = 1, то в блоке 2 ей сразу присваивается значение 1. Далее, если N>1, то в цикле, образованном блоками 4-5, накапливается искомое произведение и помещается в переменную К. В блоке 6 имя Fact функции получает значение вычисленного произведения из ячейки К. Для процедур действия, размещенного в блоке 6, не может быть, а для функций оно должно быть обязательно, поскольку иначе значение функции на выходе окажется неопределенным.

Обращение к функции в других алгоритмах (головных, процедурах, функциях) производится по ее имени.

При этом оно может входить в состав выражений. В качестве фактических параметров могут быть использованы как переменные, константы, так и целые выражения. Важно только, чтобы фактический параметр был совместим по типу с формальным, который содержится в заголовке описания алгоритма.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать алгоритм по информатике, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать алгоритм по информатике", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать алгоритм по информатике:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *