Главная » Правописание слов » Как написать модуль числа в питоне

Слово Как написать модуль числа в питоне - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Модуль числа в Python

Очень часто возникает необходимость вычисления модуля числа в Python. Рассмотрим, что такое модуль числа, какие есть способы его вычисления. Так же отдельно коснемся комплексных чисел.

Модуль числа

Часто в программировании требуется вычислить абсолютное значение числа. Иначе говоря, отбросить знак.

При вычислении модуля возможны 3 ситуации:

Но это все справедливо только для действительных чисел. Чему же тогда будет равен модуль комплексных?

Комплексное число состоит из действительной составляющей и мнимой. Геометрически это можно представить как 2 ортогональные оси: действительную и мнимую. Отмечаем на координатных осях требуемую точку. Модулем будет длина отрезка, проведенного из начала координат в эту точку.

Вычисление

Вычислять модуль можно следующими способами:

Все эти функции работают как в Python 2, так и в Python 3.

Для вычисления в Python модуля числа используется функция abs. Результат функции того же типа, которого был аргумент.

Свое решение

Если по каким то причинам нет возможности или желания использовать стандартные функции, то можно написать свое решение.

Например, можно вычислить воспользоваться тернарным оператором.

На основе такого условия сделаем свою функцию.

Модуль комплексного числа

Мы разобрались как происходит вычисление с действительными числами. Теперь посмотрим, как в языке программирования Python можно получить модуль комплексного.

Функцией fabs мы не сможем воспользоваться. Если попытаемся это сделать, то получим ошибку приведения комплексного числа к действительному (TypeError).

А вот с помощью abs преобразование удается.

Или же напишем свою функцию:

Результаты получились одинаковыми. Но нам все равно пришлось подключить библиотеку math для вычисления квадратного корня.

Источник

Числа: целые, вещественные, комплексные

Числа в Python 3: целые, вещественные, комплексные. Работа с числами и операции над ними.

Целые числа (int)

Числа в Python 3 ничем не отличаются от обычных чисел. Они поддерживают набор самых обычных математических операций:

Также нужно отметить, что целые числа в python 3, в отличие от многих других языков, поддерживают длинную арифметику (однако, это требует больше памяти).

Битовые операции

Над целыми числами также можно производить битовые операции

Дополнительные методы

Системы счисления

Те, у кого в школе была информатика, знают, что числа могут быть представлены не только в десятичной системе счисления. К примеру, в компьютере используется двоичный код, и, к примеру, число 19 в двоичной системе счисления будет выглядеть как 10011. Также иногда нужно переводить числа из одной системы счисления в другую. Python для этого предоставляет несколько функций:

Вещественные числа (float)

Вещественные числа поддерживают те же операции, что и целые. Однако (из-за представления чисел в компьютере) вещественные числа неточны, и это может привести к ошибкам:

Для высокой точности используют другие объекты (например Decimal и Fraction)).

Также вещественные числа не поддерживают длинную арифметику:

Простенькие примеры работы с числами:

Дополнительные методы

Помимо стандартных выражений для работы с числами (а в Python их не так уж и много), в составе Python есть несколько полезных модулей.

Модуль math предоставляет более сложные математические функции.

Модуль random реализует генератор случайных чисел и функции случайного выбора.

Комплексные числа (complex)

В Python встроены также и комплексные числа:

Для работы с комплексными числами используется также модуль cmath.

Источник

Модуль числа в Python — функции abs() и math.fabs()

З апускаю китайскую реплику «ТАРДИС», и вот мы в пятом классе. На доске нарисована числовая ось, а на ней выделен отрезок. Его начало в точке 4, а конец — в 8. Учительница говорит, что длину отрезка можно найти путём вычитания координаты начала отрезка из координаты его конца. Вычитаем, получаем 4, и радуемся — мы нашли длину. Ура! ?

Перемещаемся на год вперёд, и там происходит странное: учительница выделяет мелом другой отрезок, но делает это в каком-то неправильном месте — левее точки с цифрой «0». Теперь перед нами старая задача, но с новыми числами и даже буквами: A, B, минус 4 и минус 8. Мы начинаем искать длину отрезка AB = [-4;-8]:

Переводим непонимающий взгляд с получившейся отрицательной длины на довольную улыбающуюся учительницу, а затем на доску. Там наверху, рядом с сегодняшней датой, написана тема урока: «Модуль числа».

Что такое модуль числа

Модуль числа называют абсолютной величиной.

Для вещественных чисел модуль определяется так:

Т.е. в любом случае, модуль — число большее или равное 0. Поэтому отрицательная длина в примере хитрой учительницы должна была быть взята по модулю:

Тогда дети бы увидели, что геометрический смысл модуля — есть расстояние. Это справедливо и для комплексных чисел, однако формальное определение для них отличается от вещественного:

, где z — комплексное число: z = x + i y.

В то время как math.fabs() может оперировать только вещественными аргументами, abs() отлично справляется и с комплексными. Для начала покажем, что abs в python работает строго в соответствии с математическим определением.

# для вещественных чисел print(abs(-1)) print(abs(0)) print(abs(1)) > 1 > 0 > 1

Как видно, с вещественными числами всё в порядке. Перейдём к комплексным.

# для комплексных чисел print(complex(-3, 4)) print(abs(complex(-3, 4))) > (-3+4j) > 5.0

Если вспомнить, что комплексное число выглядит так: z = x + i y, а его модуль вычисляется по формуле:

Можно заметить, что abs() возвращает значения разных типов. Это зависит от типа аргумента:

print(type(abs(1))) > print(type(abs(1.0))) > print(type(abs(complex(1.0, 1.0))))

print(type(math.fabs(complex(2,3)))) > TypeError: can’t convert complex to float

Для начала работы с fabs() необходимо импортировать модуль math с помощью следующей инструкции:

Мы уже выяснили, что fabs() не работает с комплексными числами, поэтому проверим работу функции на вещественных:

print(math.fabs(-10)) print(math.fabs(0)) print(math.fabs(10)) > 10.0 > 0.0 > 10.0

Источник

6 способов найти модуль числа в Python 3

Всем начинающим кодерам привет!

Сегодня я покажу вам 6 способов найти модуль числа в Python 3. Я не стал добавлять сюда совсем абсурдные вещи, но немного абсурдности здесь все же будет.

Для начала самое очевидное. Проверяем отрицательное число (назовем его x) или положительное, т.е.

А можно заменить умножение унарным минусом:

Здесь мы проверяем строку на наличие в ней минуса. Изначально я хотел использовать метод isdigit(), но потом я понял, что метод не считает точку частью числа, поэтому для float в строке метод возвращает False. Поэтому:

Тут мы будем использовать факт того, что операция квадратного корня в Python всегда возвращает положительный результат. Эту операцию не обязательно брать из библиотеки Math, можно просто возвести число в с степень 0.5. Итак:

Здесь мы используем операции со строками, как в 4 способе. Отличие в том, что мы не проверяем строку на наличие минуса. Мы убираем уго, есть он в строке или нет. Метод replace() позволяет убрать все повторения одного символа, что для нас избыточно, но с нулем повторений он тоже работает:

И вот что получилось:

Извините за мыльную картинку, диаграмму в ворде делал и в пайнт копировал. В следующий раз попытаюсь решить эту проблему

Понадобилась сегодня картинка утюга и я по привычке решил поискать ее через Яндекс-поиск. Ведь как известно из их коммюнике: «Найдется все. «

Есть у меня привычка пользоваться проверенными службами и сервисами. С большим недоверием отношусь к новому. За эту свою особенность часто получаю критику в свой адрес от жены. Как-то вечером решил приобрести ручной пылесос, который уже давно обещал) И тут супруга видит, что я уже оформляю заказ на ОЗОН, что сразу провоцирует очередной спор про…

Источник

Модуль Math — математика в Python на примерах (Полный Обзор)

Библиотека Math в Python обеспечивает доступ к некоторым популярным математическим функциям и константам, которые можно использовать в коде для более сложных математических вычислений. Библиотека является встроенным модулем Python, поэтому никакой дополнительной установки через pip делать не нужно. В данной статье будут даны примеры часто используемых функций и констант библиотеки Math в Python.

Содержание статьи

Специальные константы библиотеки math

В библиотеке Math в Python есть две важные математические константы.

Число Пи из библиотеки math

Первой важной математической константой является число Пи (π). Оно обозначает отношение длины окружности к диаметру, его значение 3,141592653589793. Чтобы получить к нему доступ, сначала импортируем библиотеку math следующим образом:

Затем можно получить доступ к константе, вызывая pi :

Данную константу можно использовать для вычисления площади или длины окружности. Далее представлен пример простого кода, с помощью которого это можно сделать:

Есть вопросы по Python?

На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!

Telegram Чат & Канал

Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!

Паблик VK

Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!

Число Эйлера из библиотеки math

Число Эйлера (е) является основанием натурального логарифма. Оно также является частью библиотеки Math в Python. Получить доступ к числу можно следующим образом:

В следующем примере представлено, как можно использовать вышеуказанную константу:

Экспонента и логарифм библиотеки math

В данном разделе рассмотрим функции библиотеки Math в Python, которые используются для нахождения экспоненты и логарифмов.

Функция экспоненты exp() в Python

Метод может быть использован со следующим синтаксисом:

Параметр x может быть положительным или отрицательным числом. Если x не число, метод возвращает ошибку. Рассмотрим пример использования данного метода:

Мы объявили три переменные и присвоили им значения с различными числовыми типами данных. Мы передали значения методу exp() для вычисления их экспоненты.

Мы также можем применить данный метод для встроенных констант, что продемонстрировано ниже:

При передаче не числового значения методу будет сгенерирована ошибка TypeError, как показано далее:

Функция логарифма log() в Python

Функция log10() в Python

Метод log10() возвращает логарифм по основанию 10 определенного числа. К примеру:

Функция log2() в Python

Функция log2() возвращает логарифм определенного числа по основанию 2. К примеру:

Функция log(x, y) в Python

Функция log1p(x) в Python

Функция log1p(x) рассчитывает логарифм(1+x), как представлено ниже:

Арифметические функции в Python

Арифметические функции используются для представления чисел в различных формах и осуществления над ними математических операций. Далее представлен перечень самых популярных арифметических функций:

В следующем примере показано использование перечисленных выше функций:

К числу других математических функций относятся:

Примеры данных методов представлены ниже:

Возведение в степень

Тригонометрические функции в Python

Модуль math в Python поддерживает все тригонометрические функции. Самые популярные представлены ниже:

Рассмотрим следующий пример:

Обратите внимание, что вначале мы конвертировали значение угла из градусов в радианы для осуществления дальнейших операций.

Конвертация типов числа в Python

Python может конвертировать начальный тип числа в другой указанный тип. Данный процесс называется «преобразованием». Python может внутренне конвертировать число одного типа в другой, когда в выражении присутствуют смешанные значения. Такой случай продемонстрирован в следующем примере:

В вышеприведенном примере целое число 3 было преобразовано в вещественное число 3.0 с плавающей точкой. Результатом сложения также является число с плавающей точкой (или запятой).

Однако иногда вам необходимо явно привести число из одного типа в другой, чтобы удовлетворить требования параметра функции или оператора. Это можно сделать с помощью различных встроенных функций Python.

Вещественное число было преобразовано в целое через удаление дробной части и сохранение базового числа. Обратите внимание, что при конвертации значения в int подобным образом число будет усекаться, а не округляться вверх.

Заключение

Библиотека Math предоставляет функции и константы, которые можно использовать для выполнения арифметических и тригонометрических операций в Python. Библиотека изначально встроена в Python, поэтому дополнительную установку перед использованием делать не требуется. Для получения дополнительной информации можете просмотреть официальную документацию.

Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.

E-mail: vasile.buldumac@ati.utm.md

Образование
Universitatea Tehnică a Moldovei (utm.md)

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать модуль числа в питоне, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать модуль числа в питоне", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать модуль числа в питоне:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Онлайн словарь однокоренных слов русского языка.
x | y Побитовое или
x ^ y Побитовое исключающее или
x & y Побитовое и
x > y Битовый сдвиг вправо