Чтобы имитировать бросок кубика в игре или предсказать загруженность интернет-ресурса, нужны случайные числа.
Мы разобрали самые популярные вопросы о случайных числах в Python с собеседований. Чаще всего для ответа достаточно написать код и кратко его прокомментировать. Да пребудет с вами Великий Рандом!
С некоторых пор утверждает, что он data scientist. В предыдущих сезонах выдавал себя за математика, звукорежиссёра, радиоведущего, переводчика, писателя. Кандидат наук, но не точных. Бесстрашно пишет о Data Science и программировании на Python.
Что нужно помнить: случайные числа — это математическое понятие, и их не следует путать с обыденными, произвольными числами. Случайное число в математике и программировании — это:
Другими словами, существует закон или правило, которое называется «функцией распределения» или просто «распределением». И это самое распределение «раздаёт» каждому числу из диапазона определённую вероятность выпадения.
В качестве диапазона значений математикам и программистам привычнее всего использовать диапазон действительных чисел от 0 до 1, но это могут быть и целые числа от 1 до 6, как в игральном кубике, или от 100 до 1 000 000 — и так далее. Главное, что и распределение, и диапазон известны заранее, а само число нет.
Итого: случайные числа — это искусственно полученная последовательность чисел из определённого диапазона, которая подчиняется одному из законов распределения случайной величины.
Распределения бывают разные. Так, равномерное распределение — это когда любое значение из диапазона имеет одну и ту же вероятность выпадения (как у игрального кубика или монетки). Если же распределение, например, нормальное (гауссиана), то чаще выпадают числа из середины диапазона. Есть даже таблица — она поможет выбрать подходящее распределение.
Основных способов два: с помощью «родной» библиотеки random и с помощью модуля numpy.random из библиотеки numpy.
Прежде чем интервьюер придерётся, не забудьте сказать, что и random, и numpy.random — генераторы псевдослучайных чисел (о них ниже). Истинно случайные числа можно получить, например, c сайта Random.Org: там они генерируются с помощью атмосферного шума.
Библиотека random имеет меньший объём, чем numpy.random, и проще в использовании. Зато numpy.random содержит дополнительные распределения для научных вычислений, а также функции для генерирования целых массивов случайных данных.
В первой строчке мы импортировали default_rng — это «генератор генераторов» случайных массивов из модуля numpy.random. Во второй — создали экземпляр такого генератора и присвоили ему имя rng. В третьей использовали его метод standard_normal, чтобы получить numpy-массив из 10 случайных чисел, и записали массив в переменную vals.
Псевдослучайные числа — это, если очень упрощать, последовательность чисел, которая только выглядит случайной, а на самом деле каждое число в ней определяется алгоритмом, то есть вычисляется. Псевдослучайные последовательности цикличны: через какой-то период все числа повторяются в точности в том же порядке.
Библиотека random и модуль numpy.random содержат в себе генератор не истинно случайных, а именно псевдослучайных чисел.
Генерировать истинно случайные числа дорого и сложно. Основная трудность состоит в том, чтобы гарантировать отсутствие какого-либо цикла, правила или алгоритма. Чаще всего истинно случайные числа берут из физического мира: шумов атмосферы, детекторов частиц, колебаний электрического тока или из космического излучения.
То, что псевдослучайная последовательность, в отличие от истинно случайной, воспроизводима, очень удобно для практических задач: часто нужно подать на вход ту же самую последовательность второй раз, чтобы посмотреть, как работает программа после добавления новых фич.
Наиболее популярный современный алгоритм генерирования псевдослучайных чисел разработан в 1997 году и носит красивое название «Вихрь Мерсенна». Он используется и в Python. Последовательность чисел, порождённая им, статистически неотличима от истинно случайной и имеет период, равный числу с шестью тысячами знаков. Этого хватает для задач симуляции и моделирования, но с точки зрения криптографии такая последовательность всё равно небезопасна: для успешной атаки достаточно иметь сравнительно небольшую сгенерированную этим генератором последовательность.
Истинно случайную последовательность повторить невозможно. Но для повторения псевдослучайных чисел в обеих основных библиотеках — random и numpy.random есть функция seed (), которая отвечает за инициализацию («посев») последовательности.
Передавая аргумент 42 в функцию seed(), мы указываем конкретное место в псевдослучайной последовательности, поэтому команда random.random() в третьей и последней строках выдаёт одинаковое число — оно идёт первым после точки, помеченной как seed (42).
В seed() можно передать целые и дробные числа, а также строки и кортежи. Если оставить скобки пустыми, то в качестве аргумента seed() возьмёт текущее системное время.
Аналогичная функция есть в модуле numpy.random:
Часто на собеседованиях просят написать программу, связанную с вероятностями. Например, код для численной проверки ответа к задачке «Какова вероятность вытащить зелёный шар из мешка, в котором 1 зелёный и 4 красных шара».
(Ответ ⅕ = 0,2).
Иными словами, если 100 раз вынимать шар из мешка, возвращая его обратно, количество выпадения зелёных шаров должно приближаться к 20. Вариант кода для проверки:
Функция random.choice() случайным образом выбирает значение из заданного диапазона — списка из одного « green» и четырёх « red». Код выведет количество зелёных шаров после 100 попыток.
Другой вариант: предположим, у нас есть так называемая «нечестная» монетка, где орёл ( H, «heads») и решка ( T, «tails») выпадают не с вероятностью ½, как положено, а по-другому: орёл с вероятностью p(H) = 0,2, а решка, соответственно, p(T) = 0,8.
Тогда код для проверки будет выглядеть примерно так:
Здесь используется другая функция, choices, в которую вместе со списком значений можно в параметре weights передавать вероятности их выпадения.
Код выведет количество выпавших орлов после 10 000 бросков.
К слову: задачи на нечестные монетки, наряду с поиском n-ного числа Фибоначчи и нахождением угла между часовой и минутной стрелками, кочуют из одного собеседования в другое уже не первый десяток лет. Есть вероятность, что одна из них попадётся и вам.
Закон больших чисел (ЗБЧ) говорит, что при увеличении количества попыток случайная величина стремится к своему математическому ожиданию — всё усредняется. Подробнее об этом можно прочитать в нашей статье об основах математики для Data Science.
Код для иллюстрации ЗБЧ на примере честной монетки выглядит так:
Вначале мы импортировали уже знакомый нам модуль random и модуль matplotlib.plt — он нужен для рисования простых графиков. После этого определили переменные: общее количество бросков ( total_flips), список из значений вероятностей ( numerical_probability), количество выпавших орлов ( H_count).
Теперь в цикле мы 5 000 раз «подбрасываем» монетку. Если выпадает орёл (« H»), то делим текущее количество выпавших орлов на текущее количество бросков и добавляем итоговое значение в конец списка numerical_probability. В конце рисуем график.
Чем больше бросков, тем ближе к 0,5 вероятность выпадения орла. Всё, как и предсказывает закон больших чисел.
В логистике: при расчётах страховых запасов товара — чтобы склад внезапно не опустел или, наоборот, не пришлось держать избыток товара слишком долго. Принято считать, что поведение покупателей случайно и подчиняется одной из разновидностей нормального распределения. В особо запущенных случаях считается случайным даже поведение поставщиков.
В науке: с помощью метода Монте-Карло учёные моделируют поведение частиц во фрактальном окружении в трёхмерном пространстве. Метод Монте-Карло основан на использовании большого количества генерируемых случайных чисел.
В микроэлектронике: броуновское движение частиц играет важную роль в формировании пористости плёночного покрытия полупроводников при напылении его на поверхность. Просчитать это на компьютере гораздо дешевле, чем экспериментировать с реальным покрытием, поэтому сначала его рассчитывают, а потом запускают в производство.
В криптографии: для генерации шифровальных ключей. Здесь становится особенно важным различие между псевдослучайными и истинно случайными числами.
А чтобы никакая псевдослучайность не помешала вам успешно пройти собеседование, приходите в наш Шаолинь на курс «Профессия Python-разработчик». Вы изучите random, numpy и ещё много приёмов пайтонического кунг-фу, а мы поможем с наставниками, единомышленниками и, конечно, с трудоустройством.
Персонаж мультфильма «Кунг-фу Панда», старая мудрая черепаха, учитель и основоположник кунг-фу.
В компьютерных программах нередко требуется эмуляция случайности. Например, при разработке игр. Если в программе имеется некий генератор, то есть производитель, случайного числа, то, используя полученное таким образом число, можно выбирать ту или иную ветку выполнения программы, или произвольный объект из коллекции. Другими словами, главное – сгенерировать число. Эмуляция случайности иного рода основывается на нем.
Мы наверняка не знаем, есть ли в природе случайность, или она нам только кажется из-за ограниченности наших знаний. Мы только знаем, что в программировании настоящей случайности нет. Неоткуда взяться произвольному числу, нельзя запрограммировать его появление из ниоткуда. Можно лишь создать программу, которая в результате применения сложной формулы к «зерну» будет выдавать число, и нам будет казаться, что это число случайно.
«Зерно» – это исходные данные для формулы. Им может быть, например, системное время в миллисекундах, которое постоянно меняется. Следовательно, «зерно» будет постоянно разным. Или программист может задавать его самостоятельно.
Чтобы обращаться к функциям, надо импортировать модуль random :
Или импортировать отдельные функции из него:
Функции randint() и randrange() генерируют псевдослучайные целые числа. Первая из них наиболее простая и всегда принимает только два аргумента – пределы целочисленного диапазона, из которого выбирается любое число:
или (если импортировались отдельные функции):
В случае randint() обе границы включаются в диапазон, т. е. на языке математики отрезок описывается как [a; b].
Числа могут быть отрицательными:
Но первое число всегда должно быть меньше или, по-крайней мере, равно второму. То есть a randrange() сложнее. Она может принимать один аргумент, два или даже три. Если указан только один, то она возвращает случайное число от 0 до указанного аргумента. Причем сам аргумент в диапазон не входит. На языке математики – это [0; a).
Если в randrange() передается два аргумента, то она работает аналогично randint() за одним исключением. Верхняя граница не входит в диапазон, т. е. [a; b).
Здесь результатом второго вызова всегда будет число 1.
Чтобы получить случайное вещественное число, или, как говорят, число с плавающей точкой, следует использовать функцию random() из одноименного модуля random языка Python. Она не принимает никаких аргументов и возвращает число от 0 до 1, не включая 1:
Результат содержит много знаков после запятой. Чтобы его округлить, можно воспользоваться встроенной в Python функцией round() :
Чтобы получать случайные вещественные числа в иных пределах, отличных от [0; 1), прибегают к математическим приемам. Так если умножить полученное из random() число на любое целое, то получится вещественное в диапазоне от 0 до этого целого, не включая его:
Если нижняя граница должна быть отличной от нуля, то число из random() надо умножать на разницу между верхней и нижней границами, после чего прибавить нижнюю:
В данном примере число умножается на 6. В результате получается число от 0 до 6. Прибавив 4, получаем число от 4 до 10.
Используя функцию randrange() получите псевдослучайное четное число в пределах от 6 до 12. Также получите число кратное пяти в пределах от 5 до 100.
Напишите программу, которая запрашивает у пользователя границы диапазона и какое (целое или вещественное) число он хочет получить. Выводит на экран подходящее случайное число.
Примеры решения и дополнительные уроки в android-приложении и pdf-версии курса
Теперь вы знаете какие однокоренные слова подходят к слову Как написать рандомайзер на python, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать рандомайзер на python", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.