Уравнение плоскости, проходящей через заданную точку перпендикулярно к двум заданным пересекающимся плоскостям.
В этой статье содержится ответ на вопрос: «Как написать уравнение плоскости, проходящей через заданную точку перпендикулярно к двум заданным плоскостям»? Сначала приведены необходимые теоретические сведения, а также рассуждения, помогающие составить уравнение плоскости, проходящей через заданную точку перпендикулярно к двум пересекающимся плоскостям. После этого разобраны решения характерных примеров и задач.
Навигация по странице.
Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к двум заданным плоскостям.
Начнем с постановки задачи.
Заметим, что плоскость , уравнение которой нам требуется составить, перпендикулярна к прямой, по которой пересекаются плоскости и . Действительно, из признака перпендикулярности двух плоскостей следует, что плоскость, перпендикулярная линии пересечения двух плоскостей, перпендикулярна к каждой из этих плоскостей. Более того, существует только одна плоскость, проходящая через заданную точку пространства перпендикулярно двум пересекающимся плоскостям, так как существует только одна плоскость, проходящая через заданную точку перпендикулярно к заданной прямой.
Теперь приступим именно к решению поставленной задачи.
Из условия нам известны координаты точки , через которую проходит плоскость . Если мы найдем координаты нормального вектора плоскости , то сможем записать общее уравнение плоскости, проходящей через заданную точку с заданным нормальным вектором, в виде , где — нормальный вектор плоскости .
Итак, наша задача сводится к нахождению координат нормального вектора плоскости . В свою очередь нормальный вектор плоскости есть направляющий вектор прямой, по которой пересекаются две заданные плоскости и , так как плоскость перпендикулярна к пересекающимся плоскостям и . В частности, если плоскости и заданы общими уравнениями плоскостей вида и соответственно, то направляющим вектором прямой, по которой пересекаются плоскости и , является векторное произведение векторов и (об этом написано в разделе координаты направляющего вектора прямой, по которой пересекаются две заданные плоскости).
Чтобы написать уравнение плоскости, проходящей через заданную точку перпендикулярно к двум пересекающимся плоскостям и , нужно
Чтобы все стало понятно, предлагаем перейти к следующему пункту и ознакомиться с подробным решением примеров, в которых находится уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к двум заданным пересекающимся плоскостям.
Примеры составления уравнения плоскости, проходящей через заданную точку перпендикулярно к двум заданным плоскостям.
Начнем с задачи на нахождение уравнения плоскости, перпендикулярной к двум координатным плоскостям.
Уравнение плоскости, проходящей через прямую перпендикулярно заданной плоскости онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Уравнение плоскости проходящей через прямую перпендикулярно заданной плоскости − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L
Пусть плоскость α1 не перпендинулярно прямой L.
Задача заключается в построении уравнения плоскости α, проходящей через прямую L перпендикулярно плоскости α1 (Рис.1).
Запишем уравнение искомой плоскости α:
Искомая плоскость α проходит через прямую L, следовательно она проходит через точку M0(x0, y0, z0). Тогда справедливо следующее равенство:
и поскольку прямая L принадлежит этой плоскости, то нормальный вектор n=<A, B, C> и направляющий вектор q=<m, p, l> ортогональны:
Для того, чтобы плоскость α была перпендикулярна плоскости α1, нормальные векторы этих плоскостей должны быть ортогональными, т.е. скалярное произведение этих векторов должно быть равным нулю:
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:
Решив однородную систему линейных уравнений (7) найдем частное решение. (Как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L перпендикулярно плоскости α1.
Пример 1. Найти уравнение плоскости α, проходящей через прямую L:
перпендикулярно плоскости α1 :
Уравнение искомой плоскости α можно записать следующей формулой:
где n=<A, B, C> нормальный вектор плоскости.
а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:
Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:
(13) |
(14) |
(15) |
Представим эти уравнения в матричном виде:
Решим систему линейных уравнений (16) отностительно A, B, C, D:
Таким образом искомая плоскость имеет нормальный вектор n=<A, B, C>=<9/43,−17/43,5/43>. Тогда подставляя в уравнение плоскости
значения A, B, C, D, получим:
Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:
Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (19).
Пример 2. Найти уравнение плоскости α, проходящей через прямую L:
перпендикулярно плоскости α1 :
Уравнение искомой плоскости α можно записать следующей формулой:
где n=<A, B, C> нормальный вектор плоскости.
а условие принадлежности прямой L к искомой плоскости α представляется следующим равенством:
Так как плоскость α должна быть перпендикулярна плоскости α1, то должна выполнятся условие:
(25) |
(26) |
(27) |
Представим эти уравнения в матричном виде:
Решим систему линейных уравнений (28) отностительно A, B, C, D:
Таким образом искомая плоскость имеет нормальный вектор n=<A, B, C>=<3/2,−1/2,1>. Тогда подставляя в уравнение плоскости
значения A, B, C, D, получим:
Уравнение плоскости можно представить более упрощенном виде, умножив на число 43:
Ответ: Уравнение плоскости, проходящей через прямую (1) перпендикулярно плоскости (2) имеет вид (31).
Уравнение плоскости.
Общее уравнение плоскости
Любую плоскость можно задать уравнением плоскости первой степени вида
A x + B y + C z + D = 0
где A, B и C не могут быть одновременно равны нулю.
Уравнение плоскости в отрезках
x | + | y | + | z | = 1 |
a | b | c |
Уравнение плоскости, проходящей через точку, перпендикулярно вектору нормали
Чтобы составить уравнение плоскости, зная координаты точки плоскости M( x 0, y 0, z 0) и вектора нормали плоскости n = < A; B; C >можно использовать следующую формулу.
Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой
Если заданы координаты трех точек A( x 1, y 1, z 1), B( x 2, y 2, z 2) и C( x 3, y 3, z 3), лежащих на плоскости, то уравнение плоскости можно найти по следующей формуле
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой
Данная статья дает представление о том, как составить уравнение плоскости, проходящей через заданную точку трехмерного пространства перпендикулярно к заданной прямой. Разберем приведенный алгоритм на примере решения типовых задач.
Нахождение уравнения плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой
Через заданную точку трехмерного пространства проходит единственная плоскость, перпендикулярная к заданной прямой.
Теперь рассмотрим, как же найти уравнение этой единственной плоскости, проходящей через исходную точку и перпендикулярной данной прямой.
Возможно записать общее уравнение плоскости, если известны координаты точки, принадлежащей этой плоскости, а также координаты нормального вектора плоскости.
Определение координат направляющего вектора прямой a может осуществляться разными методами: зависит от варианта задания прямой a в исходных условиях. К примеру, если прямая a в условии задачи задана каноническими уравнениями вида
или параметрическими уравнениями вида:
x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ
Алгоритм для нахождения уравнения плоскости, проходящей через заданную точку перпендикулярно заданной прямой:
— определяем координаты нормального вектора плоскости α как координаты направляющего вектора прямой a :
Полученное общее уравнение плоскости: A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 дает возможность получить уравнение плоскости в отрезках или нормальное уравнение плоскости.
Решим несколько примеров, используя полученный выше алгоритм.
Решение
Рассмотрим еще один способ решить данную задачу:
Решение
Мы получили требуемое уравнение плоскости, проходящей через начало координат перпендикулярно к заданной прямой.
Решение
Общее уравнение плоскости будет записано в следующем виде:
Теперь составим искомое уравнение плоскости в отрезках:
Также нужно отметить, что встречаются задачи, требование которых – написать уравнение плоскости, проходящей через заданную точку и перпендикулярной к двум заданным плоскостям. В общем, решение этой задачи в том, чтобы составить уравнение плоскости, проходящей через заданную точку перпендикулярно к заданной прямой, т.к. две пересекающиеся плоскости задают прямую линию.
Решение
Тогда направляющим вектором α → прямой a возьмем векторное произведение векторов n 1 → и n 2 → :
Математический портал
Nav view search
Navigation
Search
Плоскость в пространстве, всевозможные уравнения, расстояние от точки до плоскости.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Существуют такие формы записи уравнения плоскости:
Примеры:
2.180.
Решение.
2.181.
Решение.
2.182.
Решение.
2.183.
Решение.
$(x-1)(-1)1+1\cdot z\cdot 0+(y-2)3-3(-1)z-0\cdot 1\cdot(x-1)-1(y-2)1=0\Rightarrow$
2.184.
Решение.
Воспользуемся формулой (4):