Уравнение плоскости, проходящей через заданную точку параллельно заданной плоскости.
В этой статье детально разобран процесс нахождения уравнения плоскости, проходящей через заданную точку трехмерного пространства параллельно заданной плоскости. После изложения необходимых теоретических основ приведены подробные решения характерных задач, в которых находится уравнение плоскости, проходящей через заданную точку пространства параллельно заданной плоскости.
Навигация по странице.
Нахождение уравнения плоскости, проходящей через заданную точку пространства параллельно заданной плоскости.
Нам известно, что общее уравнение плоскости, проходящей через точку 



Итак, запишем алгоритм нахождения уравнения плоскости 


Следует заметить, что если точка М1 лежит в плоскости 


Примеры составления уравнения плоскости, проходящей через заданную точку параллельно заданной плоскости.
Разберем решения нескольких примеров, в которых требуется составить уравнение плоскости, проходящей через заданную точку пространства параллельно заданной плоскости.
Начнем с самого простого случая, когда координаты нормального вектора плоскости очень легко находятся.
Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости онлайн
С помощю этого онлайн калькулятора можно найти уравнение плоскости, проходящей через заданную точку и параллельной данной плоскости. Дается подробное решение с пояснениями. Для нахождения уравнения плоскости, введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку «Решить».
Предупреждение
Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости − теория, примеры и решения
Наша задача найти уравнение плоскости, проходящей через точку M0 и параллельной плоскости (1)(Рис.1).
![]() |
Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (1) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (1). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (1):
Решим (2) относительно D:
Подставляя значение D из (3) в (1), получим:
Уравнение (4) можно представить также в следующем виде:
Уравнение (5) является уравнением плоскости, проходящей через точку M0(x0, y0, z0) и параллельной плоскости (1).
Найти уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости :
Запишем коэффициенты нормального вектора плоскости (6):
Подставляя координаты точки M0 и координаты нормального вектора в (3), получим:
![]() ![]() | (8) |
Подставляя значения A, B, C, D в уравнение плоскости (1), получим:
![]() |
Уравнение плоскости можно представить в более упрощенном виде, умножив на 4:
![]() |
Уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости (6) имеет следующий вид:
Общее уравнение плоскости : описание, примеры, решение задач
В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.
Общее уравнение плоскости: основные сведения
Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.
Теорема состоит из двух частей. Разберем доказательство каждой из них.
Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.
Раскроем чуть шире смысл теорем.
Укажем пример как иллюстрацию этих утверждений.
Общее уравнение плоскости, проходящей через точку
Решение
Подставим координаты точки М 0 в исходной уравнение плоскости:
Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.
Решение
Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.
Возможно получить это уравнение другим способом.
Решение
Рассмотрим два способа решения.
Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:
Неполное общее уравнение плоскости
Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.
A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0
Решение
Задачу возможно решить еще одним способом.
Решение
Математический портал
Nav view search
Navigation
Search
Плоскость в пространстве, всевозможные уравнения, расстояние от точки до плоскости.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Существуют такие формы записи уравнения плоскости:
Примеры:
2.180.
Решение.
2.181.
Решение.
2.182.
Решение.
2.183.
Решение.
$(x-1)(-1)1+1\cdot z\cdot 0+(y-2)3-3(-1)z-0\cdot 1\cdot(x-1)-1(y-2)1=0\Rightarrow$
2.184.
Решение.
Воспользуемся формулой (4):
Продолжим изучение темы уравнение плоскости. В этой статье мы всесторонне рассмотрим общее уравнение плоскости в трехмерном пространстве в фиксированной прямоугольной системе координат. Сначала получим вид общего уравнения плоскости, приведем примеры и необходимые пояснения. Далее остановимся на общем уравнении плоскости, проходящей через заданную точку пространстве. В заключении разберем частные случаи общего уравнения плоскости, рассмотрим общее неполное уравнение плоскости и приведем подробные решения задач.
Навигация по странице.
Прежде чем записать общее уравнение плоскости, напомним определение прямой перпендикулярной к плоскости: прямая перпендикулярна к плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости. Из этого определения следует, что любой нормальный вектор плоскости перпендикулярен любому ненулевому вектору, лежащему в этой плоскости. Этот факт мы используем при доказательстве следующей теоремы, которая задает вид общего уравнения плоскости.
Начнем с доказательства первой части теоремы.
Равенство 












Приступим к доказательству второй части.
Пусть нам дана плоскость, проходящая через точку 


Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет 





Уравнение 
Общее уравнение плоскости вида 




Немного поясним смысл теоремы.
Приведем пример, иллюстрирующий последнюю фразу.
Общее уравнение плоскости, проходящей через точку.
Еще раз повторим, что точка 



Принадлежат ли точки 


Подставим координаты точки М0 в общее уравнение плоскости: 

Проделаем такую же процедуру с координатами точки N0 : 


М0 лежит в плоскости, а N0 – не лежит.
Из доказательства теоремы об общем уравнении плоскости виден один полезный факт: вектор 

Плоскость в прямоугольной системе координат Oxyz задана общим уравнением плоскости 
Теперь рассмотрим обратную задачу – задачу составления уравнения плоскости, когда известны координаты ее нормального вектора. Очевидно, что существует бесконечно много параллельных плоскостей, нормальным вектором которых является вектор 



Общее уравнение плоскости с нормальным вектором 








Это уравнение можно было получить и иначе.
Очевидно, что множество точек трехмерного пространства 



Напишите уравнение плоскости, если в прямоугольной системе координат Oxyz в пространстве она проходит через точку 

Приведем два решения этой задачи.
Из условия имеем 

Теперь второй вариант решения.
Пусть 




Существует множество аналогичных задач на составление общего уравнения плоскости, в которых сначала требуется найти координаты нормального вектора плоскости. Самые распространенные из них это задачи на нахождение уравнения плоскости, проходящей через точку параллельно заданной плоскости и задачи на составление уравнения плоскости, проходящей через точку перпендикулярно к заданной прямой.
Неполное общее уравнение плоскости.
Рассмотрим все возможные общие неполные уравнения плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве.
Разберем решения нескольких примеров на составление неполного уравнения плоскости.
Напишите общее уравнение плоскости параллельной координатной плоскости Oyz и проходящей через точку 
Приведем второй способ решения этой задачи.
























