Главная » Правописание слов » Как написать формулу линейной функции по графику 7 класс

Слово Как написать формулу линейной функции по графику 7 класс - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Линейная функция « y = kx + b » и её график

Прежде чем перейти к изучению функции « y = kx » внимательно изучите урок
«Что такое функция в математике» и «Как решать задачи на функцию».

Функцию вида « y = kx + b » называют линейной функцией.

Вместо « k » и « b » могут стоять любые числа (положительные, отрицательные или дроби).

Другими словами, можно сказать, что « y = kx + b » — это семейство всевозможных функций, где вместо « k » и « b » стоят числа.

Примеры функций типа « y = kx + b ».

Функция Коэффициент « k » Коэффициент « b »
y = 5x + 3 k = 5 b = 3
y = −x + 1 k = −1 b = 1
y =

2
3

x − 2

k =

2
3
b = −2
y = 0,5x k = 0,5 b = 0

Обратите особое внимание на функцию « y = 0,5x » в таблице. Часто совершают ошибку при поиске в ней числового коэффициента « b ».

Рассматривая функцию « y = 0,5x », неверно утверждать, что числового коэффициента « b » в функции нет.

Как построить график линейной функции
« y = kx + b »

Из геометрии вспомним аксиому (утверждение, которое не требует доказательств), что через любые две точки можно провести прямую и притом только одну.

Исходя из аксиомы выше следует, что чтобы построить график функции вида
« у = kx + b » нам достаточно будет найти всего две точки.

Для примера построим график функции « y = −2x + 1 ».

Найдем значение функции « y » для двух произвольных значений « x ». Подставим, например, вместо « x » числа « 0 » и « 1 ».

Выбирая произвольные числовые значения вместо « x », лучше брать числа « 0 » и « 1 ». С этими числами легко выполнять расчеты.

Полученные значения « x » и « y » — это координаты точек графика функции.

Запишем полученные координаты точек « y = −2x + 1 » в таблицу.

Точка Координата по оси « Оx » (абсцисса) Координата по оси « Оy » (ордината)
(·)A 0 1
(·)B 1 −1

Отметим полученные точки на системе координат.

Теперь проведем прямую через отмеченные точки. Эта прямая будет являться графиком функции « y = −2x + 1 ».

Как решать задачи на
линейную функцию « y = kx + b »

Построить график функции « y = 2x + 3 ». Найти по графику:

Вначале построим график функции « y = 2x + 3 ».

Используем правила, по которым мы строили график функции выше. Для построения графика функции « y = 2x + 3 » достаточно найти всего две точки.

Выберем два произвольных числовых значения для « x ». Для удобства расчетов выберем числа « 0 » и « 1 ».

Выполним расчеты и запишем их результаты в таблицу.

Точка Координата
по оси « Оx »
Координата
по оси « Оy »
(·)A 0 y(0) = 2 · 0 + 3 = 3
(·)B 1 y(1) = 2 ·1 + 3 = 5

Отметим полученные точки на прямоугольной системе координат.

Соединим полученные точки прямой. Проведенная прямая будет являться графиком функции « y = 2x + 3 ».

Теперь работаем с построенным графиком функции « y = 2x + 3 ».

Тему «Как получить координаты точки функции» с графика функции мы уже подробно рассматривали в уроке «Как решать задачи на функцию».

В этому уроке для решения задачи выше вспомним только основные моменты.

Чтобы найти значение « y » по известному значению « x » на графике функции необходимо:

Запишем полученные результаты в таблицу.

Заданное значение « x » Полученное с графика значение « y »
−1 1
2 7
3 9
5 13

Запишем полученные результаты в таблицу.

Заданное значение « y » Полученное с графика значение « x »
−1 −2
0 −1,5
1 −1
4 0,5

Как проверить, проходит ли график через точку

Рассмотрим другое задание.

Чтобы проверить принадлежность точки графику функции нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси « Ox » вместо « x », а координату по оси « Oy » вместо « y ») и выполнить арифметические расчеты.

−2 = 2 · 1 −

1
3

−2 = 2 −

1
3

−2 = 1

3
3

1
3

−2 = 1

2
3

(неверно)

Как найти точки пересечения графика с осями

Найти координаты точек пересечения графика функции « y = −1,5x + 3 » с осями координат.

Для начала построим график функции « y = −1,5x + 3 » и на графике отметим точки пересечения с осями.

Для построения графика функции найдем координаты двух точек
функции « y = −1,5x + 3 ».

Точка Координата
по оси « Оx »
Координата
по оси « Оy »
(·)A 0 y(0) = −1,5 · 0 + 3 = 3
(·)B 1 y(1) = −1,5 · 1 + 3 = 1,5

Отметим полученные точки на системе координат и проведем через них прямую. Тем самым мы построим график функции « y = −1,5x + 3 ».

Теперь найдем координаты точек пересечения графика функции с осями по формуле функции.

Чтобы найти координаты точки пересечения графика функции
с осью « Oy » (осью ординат) нужно:

Подставим вместо « x » в формулу функции « y = −1,5x + 3 » число ноль.

Чтобы найти координаты точки пересечения графика функции
с осью « Ox » (осью абсцисс) нужно:

Подставим вместо « y » в формулу функции « y = −1,5x + 3 » число ноль.

Чтобы было проще запомнить, какую координату точки нужно приравнивать к нулю, запомните «правило противоположности».

Источник

График линейной функции, его свойства и формулы

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

Функция Коэффициент «k» Коэффициент «b»
y = 2x + 8 k = 2 b = 8
y = −x + 3 k = −1 b = 3
y = 1/8x − 1 k = 1/8 b = −1
y = 0,2x k = 0,2 b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Источник

Алгоритм определения формулы линейной функции по графику

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Выполнила учительница математики МБОУ Башкирский лицей № 1 муниципального района Учалинский район Республики Башкортостан Хидиятова Залифа Даутовна

Алгоритм определения формулы линейной функции по графику»

На рисунке представлен график функции у = kx +b.
Записать формулу линейной функции, соответствующей данному графику.



1) Так как ордината точки пересечения графика функции с осью Оy равна 1, следовательно, b=1.
Значит, у = kx+ 1

2) Выбираем на графике произвольную точку, например, А (2;2) и определяем её координаты: если x = 2, то у = 2. Подставим в нашу формулу вместо Х и У и получим уравнение относительно k.
2 = 2k+1
2k=1
k = 0.5 Записываем формулу линейной функции: у = 0,5х + 1.

Написать ФОРМУЛУ линейной функции У= КХ+В, график которой изображен на рисунке :

Это ВПР задание 8) это ответ:

ВНИМАНИЕ : задание на сегодня 16 апреля

Внимание : вот эти следующие задания пока НЕ РЕШАТЬ.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-1354301

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Ученые изучили проблемы родителей, чьи дети учатся в госпитальных школах

Время чтения: 5 минут

Названы главные риски для детей на зимних каникулах

Время чтения: 3 минуты

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Время чтения: 1 минута

Во всех педвузах страны появятся технопарки

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Как найти k и b по графику линейной функции?

В статье я расскажу про два простых способа найти \(k\) и \(b\), если известен график линейной функции.

Способ 1

Первый способ основывается на трех фактах:

Линейная функция пересекает ось \(y\) в точке \(b\).
Примеры:

Но не советую определять так \(b\), если прямая пересекает ось не в целом значении или если точка пересечения вообще не видна на графике. Для таких случаев пользуйтесь вторым способом.

Если функция возрастает, то знак коэффициента \(k\) плюс, если убывает – минус, а если постоянна, то \(k=0\).

Чтоб конкретнее определить \(k\) надо построить на прямой прямоугольный треугольник так, чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Далее, чтоб определить \(k\) нужно вертикальную сторону треугольника поделить на горизонтальную и поставить знак согласно возрастанию/убыванию функции.


Давайте пока что не будем искать формулу иррациональной функции, сосредоточимся только на линейной функции.

\(b=3\) – это сразу видно. Функция идет вниз, значит \(k 0\). \(k=+\frac=\frac<4><4>=1,b=1\). \(f(x)=x+1\).

Теперь перейдем к функции \(g(x)\). Найдем координаты точек \(D\) и \(E\): \(D(-2;4)\), \(E(-4;1)\). Можно составить систему:

Вычтем второе уравнение из первого, чтоб убрать \(b\):

\(g(x)=1,5x+7\). Обе функции найдены, теперь можно найти абсциссу (икс) точки пересечения. Приравняем \(f(x)\) и \(g(x)\).

Картинку в хорошем качестве, можно скачать нажав на кнопку «скачать статью».

Источник

Урок алгебры в 7-м классе на тему «Линейная функция и ее график»

Разделы: Математика

Цели: рассмотреть случаи взаимного расположения прямых – графиков линейных функций; ввести понятие углового коэффициента k; развивать навыки построения прямых по координатам точек; приучать учащихся к аккуратному построению прямых.

1. Изучение нового материала.

Линейной функцией называется функция, которую можно задать формулой вида y=kx+b, где x – независимая переменная, k и b – некоторые числа.

Прямая пропорциональность является частным случаем линейной функции при b = 0.

Возьмем графики функции y = 0,5x и у = 0,5х + 2.

Если график функции у = 0,5x сдвинуть на 2 единицы вверх, то каждая точка графика функции у = 0,5х перейдет в точку графика функции у = 0,5х + 2. При этом любая точка графика у = 0,5х + 2 получается из соответствующей точки графика функции y = 0,5x.

График функции y=kx+b, где k0, есть прямая, параллельная прямой y=kx.

Если k=0, то формула y=kx+b принимает вид y = b. Графиком функции y = kx + b является прямая, параллельная оси х при b0 или сама ось х при b = 0.

Графиком линейной функции является прямая.

Для построения графика линейной функции достаточно найти координаты двух точек графика, отметить эти точки на координатной плоскости и провести через них прямую.

Расположение графика функции y=kx+b на координатной плоскости зависит от коэффициентов k и b.

Число k называется угловым коэффициентом прямой – графика функции у = kx + b.

Если k>0, то угол наклона прямой у=kx+b к оси х острый; если k 2 – 3 нет;

б) у = 7 – 9х да; г) нет; е) да.

а) х = –1,5; у = – 3 • (– 1,5) + 1,5 = 6

х = 2,5; у = –3 • 2,5 + 1,5 = –7,5 + 1,5 = –6

х = 4; у = –3 • 4 + 1,5 = –2 + 1,5 = –10,5

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать формулу линейной функции по графику 7 класс, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать формулу линейной функции по графику 7 класс", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать формулу линейной функции по графику 7 класс:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *