Параллельность прямых
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение параллельности прямых
Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.
Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.
Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.
Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.
На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Свойства и признаки параллельных прямых
Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.
Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.
Если секущая проходит через две параллельные прямые, то:
∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.
∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.
Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.
А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.
Задача 1
Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.
Решение
Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.
Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.
Задача 2
Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.
Решение
Поскольку а II b, значит ∠MKD + ∠KDN = 180°.
Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.
Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.
Параллельность прямых
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение параллельности прямых
Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.
Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.
Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.
Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.
На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Свойства и признаки параллельных прямых
Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.
Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.
Если секущая проходит через две параллельные прямые, то:
∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.
∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.
Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.
А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.
Задача 1
Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.
Решение
Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.
Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.
Задача 2
Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.
Решение
Поскольку а II b, значит ∠MKD + ∠KDN = 180°.
Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.
Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.
знак параллельности
ТолкованиеПереводзнак параллельности мат. parallel mark, parallel sign
Смотреть что такое “знак параллельности” в других словарях:
Parallel — Знак параллельности || параллельный … Краткий толковый словарь по полиграфии
История математических обозначений — Математические обозначения это символы, используемые для компактной записи математических уравнений и формул[1]. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского),… … Википедия
ЗНАКИ МАТЕМАТИЧЕСКИЕ — условные обозначения, предназначенные для записи математич. понятий и выкладок. Напр., понятие квадратный корень из числа, равного отношению длины окружности к ее диаметру обозначается кратко а предложение отношение длины окружности к ее диаметру … Математическая энциклопедия
Знаки математические — условные обозначения, предназначенные для записи математических понятий, предложений и выкладок. Например, √2 (квадратный корень из двух), 3 > 2 (три больше двух) и т.п. Развитие математической символики было тесно… … Большая советская энциклопедия
ПОЛЯРИЗОВАННЫЕ НЕЙТРОНЫ — совокупность нейтронов, спины s к рых имеют преимуществ. ориентацию по отношению к к. л. выделенному направлению в пространстве, обычно направлению магн. поля Н. Т. к. нейтрон обладает спином 1/2, то в поле Н возможны две ориентации спина:… … Физическая энциклопедия
сталь — 2.1 сталь: Материал (сплав железа с углеродом),в котором массовая доля железа больше, чем массовая доля какого либо другого элемента, а массовая доля углерода составляет менее 2 %, и в состав которого входят также и другие химические элементы. У… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 380-71: Сталь углеродистая обыкновенного качества. Марки и общие технические требования — Терминология ГОСТ 380 71: Сталь углеродистая обыкновенного качества. Марки и общие технические требования оригинал документа: 2.2. Сталь группы А. 2.2.1. Нормируемые показатели для стали группы А указаны в табл. 1. Таблица 1 Категории стали Марки … Словарь-справочник терминов нормативно-технической документации
бессоюзные сложные предложения — Один из двух основных структурных типов сложного предложения в русском языке, выделяемый по формальному признаку. При бессоюзии мобилизуются в противовес союзам другие средства связи: 1) интонация; 2) видо временные отношения в предикативных… … Словарь лингвистических терминов Т.В. Жеребило
бессоюзные сложные предложения — Один из двух основных структурных типов сложного предложения в русском языке, выделяемый по формальному признаку. При бессоюзии мобилизуются в противовес союзам другие средства связи: 1) интонация; 2) видо временные отношения в… … Синтаксис: Словарь-справочник
Отред, Уильям — Уильям Отред William Oughtred … Википедия
Отред — Отред, Уильям Уильям Отред Уильям Отред (англ. William Oughtred, 5 марта 1575 30 июня 1660) английский математи … Википедия
Для обозначения геометрических фигур и их проекций, для отображения отношения между геометрическими фигурами, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем используются символьные обозначения.
Символьные обозначения, все их многообразие, может быть подразделено на две группы: – Первая группа – обозначения геометрических фигур и отношения между ними; – Вторая группа – обозначения логических операций, составляющая синтаксическую основу геометрического языка.
Символьные обозначения – Первая группа
Символы, обозначающие геометрические фигуры и отношения между ними
Обозначения геометрических фигур: Φ – геометрическая фигура; A, B, C, D, …, L, M, N, … – точки расположенные в пространстве; 1, 2, 3, 4, …, 12, 13, 14, … – точки расположенные в пространстве; a, b, c, d, …, l, m, n, … – линии, произвольно расположенные по отношению к плоскостям проекций; h, υ(f), ω – линии уровня (горизонталь, фронталь, профильная прямая соответственно); (AB) – прямая проходящая через точки A и B; [AB) – луч с началом в точке A; [AB] – отрезок прямой, ограниченный точками A и B; α, β, γ, δ, …, ζ, η, θ – поверхность; ∠ABC – угол с вершиной в точке B; ∠α, ∠β, ∠γ – угол α, угол β, угол γ соответственно; |AB| – расстояние от точки A до точки B (длина отрезка AB); |Aa| – расстояние от точки A до линии a; |Aα| – расстояние от точки A до поверхности α; |ab| – расстояние между прямыми a и b; |αβ| – расстояние между поверхностями α и β; H, V, W – координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); П1, П2, П3 – координатные плоскости проекций (именуемые как горизонтальная, фронтальная, профильная соответственно); x, y, z – координатные оси проекций (ось абсцисс, ось ординат, ось аппликат); ko – постоянная прямая эпюра Монжа;O – точка пересечения осей проекций; `, “, `” – верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); 1, 2, 3 – верхние индексы для проекций точек, прямых, углов, фигур, поверхностей на плоскости проекций (именуемые как горизонтальную, фронтальную, профильную соответственно); αH, αV, αW – след поверхности оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; αH, αV, αW – след поверхности α оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно; aH, aV, aW – след прямой a оставляемый на горизонтальной, на фронтальной, на профильной плоскости проекций соответственно;
Проекции точек, линий, поверхностей любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса A`, A”, A`” или 1`, 1″, 1`”, соответствующего плоскости проекции, на которой они получены: A`, B`, C`, D`, …, L`, M`, N`, … – горизонтальные проекции точек; A”, B”, C”, D”, …, L”, M”, N”, … – фронтальные проекции точек; A`”, B`”, C`”, D`”, …, L`”, M`”, N`”, … – профильные проекции точек; a`, b`, c`, d`, …, l`, m`, n`, … – горизонтальные проекции линий; a”, b”, c”, d”, …, l”, m”, n”, … – фронтальные проекции линий; a`”, b`”, c`”, d`”, …, l`”, m`”, n`”, … – профильные проекции линий; α`, β`, γ`, δ`, …, ζ`, η`, θ`, … – горизонтальные проекции поверхностей; α”, β”, γ”, δ”, …, ζ”, η”, θ”, … – фронтальные проекции поверхностей; α`”, β`”, γ`”, δ`”, …, ζ`”, η`”, θ`”, … – профильные проекции поверхностей;
Символы взаиморасположения геометрических объектов
ΔDEF – треугольники ABC и DEF подобны.
Символьные обозначения – Вторая группа