Главная » Правописание слов » Как пишется знак принадлежит в математике

Слово Как пишется знак принадлежит в математике - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Знаки больше и меньше в математике становятся известны детям еще до поступления в первый класс. Часто детки путают, что означает конкретный символ. Родители могут помочь своим чадам в этом вопросе, что положительно повлияет на успеваемость детей. Эти знания пригодятся малышам и в будущем – при изучении геометрии, на уроках алгебры, в примерах, где используется квадратная, а также другая степень чисел. Советы из дан статьи помогут родителям научить малышей важной математической премудрости.

Математические знаки в картинках для дошкольников

Ниже представлено цветное оформление математических символов. При обучении их можно использовать непосредственно с экрана монитора или же их можно распечатать на цветном принтере.

Знак «больше» – в какую сторону

Знак «больше» пишется так «>». Символ обозначается стрелкой, направление острого угла которой обращено в правую сторону. Немного теории: определяющим фактором является левая сторона символа. Если стрелка начинается с двух линий, которые в правой части сходятся в одну точку, тогда это знак «>».

Знак «меньше» – как правильно писать

Знак «меньше» выглядит так « » или « » и « » и « ». Для обозначения того, что больше, достаточно протянуть правую руку, а левая рука нужна для обозначения того, что меньше.

В этой игре для сравнения можно использовать не только числа, но и изображения различных предметов, а также геометрические фигуры разных размеров. Эту игру-занятие можно выполнять во время приема пищи, разложив на столе печенье, конфеты, яблоки и другие продукты. Вот так можно запомнить правильное написание знаков задолго до школы.

Игра «Кубики и доски»

Эта игра принадлежит к разряду активных игр, так как детям нужно совершать действия не только умственного характера, но и быть активными строителями. Для этой игры понадобятся следующие принадлежности: большие кубики и две прямых доски. Одну доску нужно положить на горизонтальную поверхность. На оба края лежащей доски нужно выложить кубики в столбики.

Важно чтобы столбики быть ровными, как восклицательный знак. К примеру, первый (левый) столбик состоит из 4-х кубиков, а второй из 2-х. Затем нужно положить вторую доску на оба столбика. В итоге сочетание нижней и верхней досок покажет правильный символ. В данном примере получится обозначение «>».

С каждым последующим разом можно изменять количество кубиков в столбиках. Когда столбики будут содержать одинаковое количество кубиков – доски покажут «равно».

Источник

Знаки больше меньше в какую сторону. Знаки больше и меньше на клавиатуре

Математические знаки

Скорее всего, к первому классу ребенок уже отличает на слух и визуально, что горстка из десяти ягод больше трех штук. Чтобы внедрить в жизнь новые обозначения, посмотрим на знаки «больше», «меньше», «равно» в картинках.

Символ больше (>) — это когда острый нос галочки смотрит направо. Его нужно использовать, когда первое число больше второго:

Символ меньше ( Как и в какую сторону пишется знак больше

Знак «больше» пишется так «>». Символ обозначается стрелкой, направление острого угла которой обращено в правую сторону. Немного теории: определяющим фактором является левая сторона символа. Если стрелка начинается с двух линий, которые в правой части сходятся в одну точку, тогда это знак «>».

В общем и целом логика понимания очень проста – какой стороной (большей или меньшей) знак по направлению письма смотрит в левую сторону – такой и знак. Соответственно, знак больше влево смотрит широкой стороной – большей.

Пример использования знака больше:

Как и в какую сторону пишется знак меньше

Как писать знак меньше, пожалуй, повторно объяснять уже не стоит. Совершенно аналогично знаку больше. Если знак смотрит влево узкой стороной — меньшей, то перед вами знак меньше.

Пример использования знака меньше:

100 =», что, в принципе, часто вполне допустимо, но можно сделать красивее и правильнее.

На самом деле для того, чтобы напечатать эти знаки, существуют специальные символы, которые можно ввести на любой клавиатуре. Согласитесь, знаки «≤» и «≥» выглядят значительно лучше.

Знак «меньше» выглядит так « Знаки больше и меньше на клавиатуре

Символы больше (>) и меньше ( 2
5 Знаки «больше или равно» / «меньше или равно»

Знаки «больше или равно» и «меньше или равно» выглядят соответственно так «≥», «≤». Они являются результатом объединения двух символов – «>» или « Читайте также: Как правильно держать ручку для красивого почерка. Как понять, что ребёнок неправильно держит ручку

Данные знаки используются в нестрогих неравенствах. В первом классе такие неравенства обычно не изучают.

Игры для быстрого запоминания знаков «больше» и «меньше»

Существуют различные логические игры с использованием математических символов. Таких игр множество. Ниже приводятся три игры, где детям нужно поиграться со стрелками «>» и « Игра «Большой голодный крокодил»

Это самый легкий и наглядный способ раз и навсегда запомнить, в какую сторону пишутся знаки «больше» и «меньше». На листе бумаги необходимо нарисовать две круглые тарелки. Диаметр каждой тарелки должен быть не менее 10 сантиметров.

На каждую из «тарелок» можно положить что-то приблизительно напоминающее еду. Например, можно слепить шарики из пластилина или соленого теста и договориться с ребенком, что горошины означают котлеты для крокодила. Для этой игры достаточно смастерить один символ. Его можно сделать на маленькой карточке. Обозначения «>» и « Игра «Что больше?»

В этой игре комбинация большого и указательного пальцев левой руки имеет значение символа « ». Для обозначения того, что больше, достаточно протянуть правую руку, а левая рука нужна для обозначения того, что меньше.

В этой игре для сравнения можно использовать не только числа, но и изображения различных предметов, а также геометрические фигуры разных размеров. Эту игру-занятие можно выполнять во время приема пищи, разложив на столе печенье, конфеты, яблоки и другие продукты. Вот так можно запомнить правильное написание знаков задолго до школы.

Игра «Кубики и доски»

Эта игра принадлежит к разряду активных игр, так как детям нужно совершать действия не только умственного характера, но и быть активными строителями. Для этой игры понадобятся следующие принадлежности: большие кубики и две прямых доски. Одну доску нужно положить на горизонтальную поверхность. На оба края лежащей доски нужно выложить кубики в столбики.

Важно чтобы столбики быть ровными, как восклицательный знак. К примеру, первый (левый) столбик состоит из 4-х кубиков, а второй из 2-х. Затем нужно положить вторую доску на оба столбика. В итоге сочетание нижней и верхней досок покажет правильный символ. В данном примере получится обозначение «>».

С каждым последующим разом можно изменять количество кубиков в столбиках. Когда столбики будут содержать одинаковое количество кубиков – доски покажут «равно».

Равенство и неравенство

Что такое равенство в математике — это когда одно подобно по количеству другому и между ними можно поставить знак =.

Для примера посмотрим на картинку с изображением геометрических фигур. Справа и слева количество одинаковое, значит можно поставить символ «равно».

Наглядный пример неравенства изображен на картинке ниже. Слева видим три фигуры, а справа — четыре. При этом мы знаем, что три не равно четырем или еще так: три меньше четырех.

Урок в школе зачастую проходит перед учебником, тетрадью и доской. Дома же можно использовать компьютер и некоторые задания выполнять в онлайн-формате. Как найти знаки на клавиатуре? Ответ на картинке:

Источник

Как пишется знак принадлежит в математике

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕМАТИЧЕСКИЕ СИМВОЛЫ И ЗНАКИ ДЛЯ ПРИМЕНЕНИЯ В СТАНДАРТАХ

Statistical methods. Mathematical symbols and signs to be used in the standards

Дата введения 2012-12-01

Предисловие

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5)

6 ПЕРЕИЗДАНИЕ. Июнь 2020 г.

Введение

Описание знаков, символов, выражений в настоящем стандарте приведено в форме таблиц (таблицы 4.1-19.1), структура которых, за исключением таблицы 16.1, одинакова.

В первой колонке этих таблиц приведен номер знака, символа, выражения.

Во второй колонке таблицы («Знак, символ, выражение») приведено изображение рассматриваемых знака, символа, выражения. Если более одного знака, символа или выражения приведено для одного объекта, они являются одинаково применимыми и эквивалентными.

В некоторых случаях рекомендуется применять единственное выражение.

В третьей колонке таблицы («Значение, устный эквивалент») приведено описание значения объекта и его устный эквивалент. Значение приведено для идентификации соответствующего понятия и не является полным математическим определением.

В четвертой колонке таблицы («Примечания, примеры») приведена полезная дополнительная информация. Приведенные определения являются достаточно краткими. Определения с математической точки зрения не являются полными.

Структура таблицы 16.1 несколько иная.

1 Область применения

В стандарте приведены общие сведения о математических символах и знаках, их значениях, устных эквивалентах и применении.

Рекомендуемые в стандарте символы и знаки предназначены главным образом для использования в стандартах, но могут быть использованы также и в других областях. Приведенные в настоящем стандарте математические символы соответствуют требованиям [1], ГОСТ 1.5.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

ГОСТ 1.5 Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Общие требования к построению, изложению, оформлению, содержанию и обозначению.

3 Переменные, функции и операторы

Числа, представленные цифрами, всегда изображают прямым шрифтом (вертикально), например 351204; 1,32; 7/8.

Если существует возможность ошибки, необходимо использовать круглые скобки. Например, лучше записать в виде , чтобы исключить ошибочное понимание этой формулы.

Запятая, точка с запятой или другой соответствующий символ могут быть использованы для разделения чисел или выражений. Предпочтительно использование запятой, кроме тех случаев, когда ее используют при записи десятичных дробей.

Если выражение или уравнение должно быть записано в две или более строк, следует применять правила, установленные в ГОСТ 1.5.

По возможности разрыв формулы не следует использовать внутри выражения в круглых скобках.

Общепринято использование различных букв (греческого, латинского или других алфавитов) для различных объектов. Это делает формулы более удобными и помогает в восприятии соответствующего текста. При использовании нескольких шрифтов необходимо приводить соответствующие пояснения (при необходимости).

4 Математическая логика

Знаки, символы, выражения, используемые в математической логике, приведены в таблице 4.1.

Источник

math4school.ru

Математические знаки

Бесконечность. Дж.Валлис (1655).

Впервые встречается в трактате английского математика Джон Валиса «О конических сечениях».

Основание натуральных логарифмов. Л.Эй лер (1736).

Математическая константа, трансцендентное число. Данное число иногда называют неперовым в честь шотландского учёного Непера, автора работы «Описание удивительной таблицы логарифмов» (1614). Впервые константа негласно присутствует в приложении к переводу на английский язык вышеупомянутой работы Непера, опубликованному в 1618 году. Саму же константу впервые вычислил швейцарский математик Якоб Бернулли в ходе решения задачи о предельной величине процентного дохода.

Первое известное использование этой константы, где она обозначалась буквой b, встречается в письмах Лейбница Гюйгенсу, 1690–1691 годы. Букву e начал использовать Эйлер в 1727 году, а первой публикацией с этой буквой была его работа «Механика, или Наука о движении, изложенная аналитически» 1736 год. Соответственно, e обычно называют числом Эйлера. Почему была выбрана именно буква e, точно неизвестно. Возможно, это связано с тем, что с неё начинается слово exponential («показательный», «экспоненциальный»). Другое предположение заключается в том, что буквы a, b, c и d уже довольно широко использовались в иных целях, и e была первой «свободной» буквой.

Отношение длины окружности к диаметру. У.Джонс (1706), Л.Эйлер (1736).

Математическая константа, иррациональное число. Число «пи», старое название – лудольфово число. Как и всякое иррациональное число, π представляется бесконечной непереодической десятичной дробью:

Мнимая единица. Л.Эйлер (1777, в печати – 1794).

Единичные векторы. У.Гамильтон (1853).

Единичные векторы часто связывают с координатными осями системы координат (в частности, с осями декартовой системы координат). Единичный вектор, направленный вдоль оси Х, обозначается i, единичный вектор, направленный вдоль оси Y, обозначается j, а единичный вектор, направленный вдоль оси Z, обозначается k. Векторы i, j, k называются ортами, они имеют единичные модули. Термин «орт» ввёл английский математик, инженер Оливер Хевисайд (1892), а обозначения i, j, k – ирландский математик Уильям Гамильтон.

Целая часть числа, антье. К.Гаусс (1808).

Целой частью числа [х] числа х называется наибольшее целое число, не превосходящее х. Так, [5,3]=5, [–3,6]=–4. Функцию [х] называют также «антье от х». Символ функции «целая часть» ввёл Карл Гаусс в 1808 году. Некоторые математики предпочитают использовать вместо него обозначение E(x), предложенное в 1798 году Лежандром.

Угол параллельности. Н.И. Лобачевский (1835).

Неизвестные или переменные величины. Р. Декарт (1637).

В математике переменная – это величина, характеризующаяся множеством значений, которое она может принимать. При этом может иметься в виду как реальная физическая величина, временно рассматриваемая в отрыве от своего физического контекста, так и некая абстрактная величина, не имеющая никаких аналогов в реальном мире. Понятие переменной возникло в XVII в. первоначально под влиянием запросов естествознания, выдвинувшего на первый план изучение движения, процессов, а не только состояний. Это понятие требовало для своего выражения новых форм. Такими новыми формами и явились буквенная алгебра и аналитическая геометрия Рене Декарта. Впервые прямоугольную систему координат и обозначения х, у ввел Рене Декарт в своей работе «Рассуждение о методе» в 1637 году. Вклад в развитие координатного метода внес также Пьер Ферма, однако его работы были впервые опубликованы уже после его смерти. Декарт и Ферма применяли координатный метод только на плоскости. Координатный метод для трёхмерного пространства впервые применил Леонард Эйлер уже в XVIII веке.

Вектор. О.Коши (1853).

С самого начала вектор понимается как объект, имеющий величину, направление и (необязательно) точку приложения. Зачатки векторного исчисления появились вместе с геометрической моделью комплексных чисел у Гаусса (1831). Развитые операции с векторами опубликовал Гамильтон как часть своего кватернионного исчисления (вектор образовывали мнимые компоненты кватерниона). Гамильтон предложил сам термин вектор (от латинского слова vector, несущий) и описал некоторые операции векторного анализа. Этот формализм использовал Максвелл в своих трудах по электромагнетизму, тем самым обратив внимание учёных на новое исчисление. Вскоре вышли «Элементы векторного анализа» Гиббса (1880-е годы), а затем Хевисайд (1903) придал векторному анализу современный вид. Сам знак вектора ввёл в использование французский математик Огюстен Луи Коши в 1853 году.

Сложение, вычитание. Я.Видман (1489).

Знаки плюса и минуса придумали, по-видимому, в немецкой математической школе «коссистов» (то есть алгебраистов). Они используются в учебнике Яна (Йоханнеса) Видмана «Быстрый и приятный счёт для всех торговцев», изданном в 1489 году. До этого сложение обозначалось буквой p (от латинского plus «больше») или латинским словом et (союз «и»), а вычитание – буквой m (от латинского minus «менее, меньше»). У Видмана символ плюса заменяет не только сложение, но и союз «и». Происхождение этих символов неясно, но, скорее всего, они ранее использовались в торговом деле как признаки прибыли и убытка. Оба символа вскоре получили общее распространение в Европе — за исключением Италии, которая ещё около века использовала старые обозначения.

Умножение. У.Оутред (1631), Г.Лейбниц (1698).

Знак умножения в виде косого крестика ввёл в 1631 году англичанин Уильям Оутред. До него использовали чаще всего букву M, хотя предлагались и другие обозначения: символ прямоугольника (французский математик Эригон, 1634), звёздочка (швейцарский математик Иоганн Ран, 1659). Позднее Готфрид Вильгельм Лейбниц заменил крестик на точку (конец XVII века), чтобы не путать его с буквой x; до него такая символика встречалась у немецкого астронома и математика Региомонтана (XV век) и английского учёного Томаса Хэрриота (1560 –1621).

Деление. И.Ран (1659), Г.Лейбниц (1684).

Уильям Оутред в качестве знака деления использовал косую черту /. Двоеточием деление стал обозначать Готфрид Лейбниц. До них часто использовали также букву D. Начиная с Фибоначчи, используется также горизонтальная черта дроби, употреблявшаяся ещё у Герона, Диофанта и в арабских сочинениях. В Англии и США распространение получил символ ÷ (обелюс), который предложил Иоганн Ран (возможно, при участии Джона Пелла) в 1659 году. Попытка Американского национального комитета по математическим стандартам (National Committee on Mathematical Requirements) вывести обелюс из практики (1923) оказалась безрезультатной.

Процент. М. де ла Порт (1685).

Сотая доля целого, принимаемого за единицу. Само слово «процент» происходит от латинского «pro centum», что означает в переводе «на сто». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращённо от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход.

Степени. Р.Декарт (1637), И.Ньютон (1676).

Современная запись показателя степени введена Рене Декартом в его «Геометрии» (1637), правда, только для натуральных степеней с показателями больших 2. Позднее, Исаак Ньютон распространил эту форму записи на отрицательные и дробные показатели (1676), трактовку которых к этому времени уже предложили: фламандский математик и инженер Симон Стевин, английский математик Джон Валлис и французский математик Альбер Жирар.

Корни. К.Рудольф (1525), Р.Декарт (1637), А.Жирар (1629).

Логарифм, десятичный логарифм, натуральный логарифм. И.Кеплер (1624), Б.Кавальери (1632), А. Принсхейм (1893).

Термин «логарифм» принадлежит шотландскому математику Джону Неперу («Описание удивительной таблицы логарифмов», 1614); он возник из сочетания от греческих слов λογος (слово, отношение) и αριθμος (число). Логарифм у Дж. Непера – вспомогательное число для измерения отношения двух чисел. Современное определение логарифма впервые дано английским математиком Уильямом Гардинером (1742). По определению, логарифм числа b по основанию a (a 1, a > 0) – показатель степени m, в которую следует возвести число a (называемое основанием логарифма), чтобы получить b. Обозначается log ab. Итак, m = log ab, если a m = b.

Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Термин «натуральный логарифм» ввели Пьетро Менголи (1659) и Николас Меркатор (1668), хотя лондонский учитель математики Джон Спайделл ещё в 1619 году составил таблицу натуральных логарифмов.

До конца XIX века общепринятого обозначения логарифма не было, основание a указывалось то левее и выше символа log, то над ним. В конечном счёте математики пришли к выводу, что наиболее удобное место для основания – ниже строки, после символа log. Знак логарифма – результат сокращения слова «логарифм» – встречается в различных видах почти одновременно с появлением первых таблиц логарифмов, например Log – у И. Кеплера (1624) и Г. Бригса (1631), log – у Б. Кавальери (1632). Обозначение ln для натурального логарифма ввёл немецкий математик Альфред Прингсхейм (1893).

Синус, косинус, тангенс, котангенс. У.Оутред (сер. XVII века), И.Бернулли (XVIII в.), Л.Эйлер (1748, 1753).

Сокращённые обозначения для синуса и косинуса ввёл Уильям Оутред в середине XVII века. Сокращённые обозначения тангенса и котангенса: tg, ctg введены Иоганном Бернулли в XVIII веке, они получили распространение в Германии и России. В других странах употребляются названия этих функций tan, cot предложенные Альбером Жираром ещё ранее, в начале XVII века. В современную форму теорию тригонометрических функций привёл Леонард Эйлер (1748, 1753), ему же мы обязаны и закреплением настоящей символики. Термин «тригонометрические функции» введён немецким математиком и физиком Георгом Симоном Клюгелем в 1770 году.

Линия синуса у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды), затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские переводчики не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали арабскими буквами и стали называть линию синуса «джиба». Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом sinus, имеющим то же значение. Термин «тангенс» (от лат. tangens – касающийся) был введен датским математиком Томасом Финке в его книге «Геометрия круглого» (1583).

Арксинус. К.Шерфер (1772), Ж.Лагранж (1772).

Обратные тригонометрические функции – математические функции, которые являются обратными к тригонометрическим функциям. Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции добавлением приставки «арк» (от лат. arc – дуга). К обратным тригонометрическим функциям обычно относят шесть функций: арксинус (arcsin), арккосинус (arccos), арктангенс (arctg), арккотангенс (arcctg), арксеканс (arcsec) и арккосеканс (arccosec). Впервые специальные символы для обратных тригонометрических функций использовал Даниил Бернулли (1729, 1736). Манера обозначать обратные тригонометрических функции с помощью приставки arc (от лат. arcus, дуга) появилась у австрийского математика Карла Шерфера и закрепилась благодаря французскому математику, астроному и механику Жозефу Луи Лагранжу. Имелось в виду, что, например, обычный синус позволяет по дуге окружности найти стягивающую её хорду, а обратная функция решает противоположную задачу. Английская и немецкая математические школы до конца XIX века предлагали иные обозначения: sin –1 и 1/sin, но они не получили широкого распространения.

Гиперболический синус, гиперболический косинус. В.Риккати (1757).

Первое появление гиперболических функций историки обнаружили в трудах английского математика Абрахама де Муавра (1707, 1722). Современное определение и обстоятельное их исследование выполнил итальянец Винченцо Риккати в 1757 году в работе «Opusculorum», он же предложил их обозначения: sh, ch. Риккати исходил из рассмотрения единичной гиперболы. Независимое открытие и дальнейшее исследование свойств гиперболических функций было проведено немецким математиком, физиком и философом Иоганном Ламбертом (1768), который установил широкий параллелизм формул обычной и гиперболической тригонометрии. Н.И. Лобачевский впоследствии использовал этот параллелизм, пытаясь доказать непротиворечивость неевклидовой геометрии, в которой обычная тригонометрия заменяется на гиперболическую.

Подобно тому, как тригонометрические синус и косинус являются координатами точки на координатной окружности, гиперболические синус и косинус являются координатами точки на гиперболе. Гиперболические функции выражаются через экспоненту и тесно связанных с тригонометрическими функциями: sh(x)=0,5(e x –e –x ), ch(x)=0,5(e x +e –x ). По аналогии с тригонометрическими функциями определены гиперболические тангенс и котангенс как отношения гиперболических синуса и косинуса, косинуса и синуса, соответственно.

Дифференциал. Г.Лейбниц (1675, в печати 1684).

Неопределённый интеграл. Г.Лейбниц (1675, в печати 1686).

Слово «интеграл» впервые в печати употребил Якоб Бернулли (1690). Возможно, термин образован от латинского integer – целый. По другому предположению, основой послужило латинское слово integro – приводить в прежнее состояние, восстанавливать. Знак ∫ используется для обозначения интеграла в математике и представляет собой стилизованное изображение первой буквы латинского слова summa – сумма. Впервые он был использован немецким математиком основателем дифференциального и интегрального исчислений Готфридом Лейбницем в конце XVII века. Другой из основателей дифференциального и интегрального исчислений Исаак Ньютон в своих работах не предложил альтернативной символики интеграла, хотя пробовал различные варианты: вертикальную черту над функцией или символ квадрата, который стоит перед функцией или окаймляет её. Неопределённый интеграл для функции y=f(x) — это совокупность всех первообразных данной функции.

Определённый интеграл. Ж.Фурье (1819–1822).

Определённый интеграл функции f(x) с нижним пределом a и верхним пределом b можно определить как разность F(b) – F(a) = a ∫ b f(x)dx, где F(х) – некоторая первообразная функции f(x). Определённый интеграл a ∫ b f(x)dx численно равен площади фигуры, ограниченной осью абсцисс, прямыми x=a и x=b и графиком функции f(x). Оформление определённого интеграла в привычном нам виде предложил французский математик и физик Жан Батист Жозеф Фурье в начале XIX века.

Производная. Г.Лейбниц (1675), Ж.Лагранж (1770, 1779).

Производная – основное понятие дифференциального исчисления, характеризующее скорость изменения функции f(x) при изменении аргумента x. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную в некоторой точке, называют дифференцируемой в данной точке. Процесс вычисления производной называется дифференцированием. Обратный процесс – интегрирование. В классическом дифференциальном исчислении производная чаще всего определяется через понятия теории пределов, однако исторически теория пределов появилась позже дифференциального исчисления.

Частная производная. А. Лежандр (1786), Ж.Лагранж (1797, 1801).

Разность, приращение. И.Бернулли (кон. XVII в. – перв. пол. XVIII в.), Л.Эйлер (1755).

Обозначение приращения буквой Δ впервые употребил швейцарский математик Иоганн Бернулли. В общую практику использования символ «дельта» вошёл после работ Леонарда Эйлера в 1755 году.

Сумма. Л.Эйлер (1755).

Произведение. К.Гаусс (1812).

Факториал. К.Крамп (1808).

Факториал числа n (обозначается n!, произносится «эн факториал») – произведение всех натуральных чисел до n включительно: n! = 1·2·3·. ·n. Например, 5! = 1·2·3·4·5 = 120. По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел. Факториал числа n равен числу перестановок из n элементов. Например, 3! = 6, действительно,

– все шесть и только шесть вариантов перестановок из трёх элементов.

Термин «факториал» ввёл французский математик и политический деятель Луи Франсуа Антуан Арбогаст (1800), обозначение n! – французский математик Кристиан Крамп (1808).

Модуль, абсолютная величина. К.Вейерштрасс (1841).

Модуль, абсолютная величина действительного числа х – неотрицательное число, определяемое следующим образом: |х| = х при х ≥ 0, и |х| = –х при х ≤ 0. Например, |7| = 7, |– 0,23| = –(–0,23) = 0,23. Модуль комплексного числа z = a + ib – действительное число, равное √(a 2 + b 2 ).

Считают, что термин «модуль» предложил использовать английский математик и философ, ученик Ньютона, Роджер Котс. Готфрид Лейбниц тоже использовал эту функцию, которую называл «модулем» и обозначал: mol x. Общепринятое обозначение абсолютной величины введено в 1841 году немецким математиком Карлом Вейерштрассом. Для комплексных чисел это понятие ввели французские математики Огюстен Коши и Жан Робер Арган в начале XIX века. В 1903 году австрийский учёный Конрад Лоренц использовал эту же символику для длины вектора.

Норма – функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или модуля числа. Знак «нормы» (от латинского слово «norma» – «правило», «образец») ввел немецкий математик Эрхард Шмидт в 1908 году.

Предел. С.Люилье (1786), У.Гамильтон (1853), многие математики (вплоть до нач. ХХ в.)

Предел – одно из основных понятий математического анализа, означающее, что некоторая переменная величина в рассматриваемом процессе ее изменения неограниченно приближается к определенному постоянному значению. Понятие предела на интуитивном уровне использовалось ещё во второй половине XVII века Исааком Ньютоном, а также математиками XVIII века, такими как Леонард Эйлер и Жозеф Луи Лагранж. Первые строгие определения предела последовательности дали Бернард Больцано в 1816 году и Огюстен Коши в 1821 году. Символ lim (3 первые буквы от латинского слова limes – граница) появился в 1787 году у швейцарского математика Симона Антуана Жана Люилье, но его использование ещё не напоминало современное. Выражение lim в более привычном для нас оформлении первым использовал ирландский математик Уильям Гамильтон в 1853 году. Близкое к современному обозначение ввёл Вейерштрасс, однако вместо привычной нам стрелки он использовал знак равенства. Стрелка появилась в начале XX века сразу у нескольких математиков – например, у английского математика Годфрида Харди в 1908 году.

Дзета-функция, дзета-функция Римана. Б.Риман (1857).

Аналитическая функция комплексного переменного s = σ + it, при σ > 1 определяемая абсолютно и равномерно сходящимся рядом Дирихле:

При σ > 1 справедливо представление в виде произведения Эйлера:

где произведение берётся по всем простым p. Дзета-функция играет большую роль в теории чисел. Как функция вещественного переменного, дзета-функция была введена в 1737 году (опубликовано в 1744 г.) Л. Эйлером, который и указал её разложение в произведение. Затем эта функция рассматривалась немецким математиком Л. Дирихле и, особенно успешно, российским математиком и механиком П.Л. Чебышевым при изучении закона распределения простых чисел. Однако наиболее глубокие свойства дзета-функции были обнаружены позднее, после работы немецкого математика Георга Фридриха Бернхарда Римана (1859), где дзета-функция рассматривалась как функция комплексного переменного; им же введено название «дзета-функция» и обозначение ζ(s) в 1857 году.

Гамма-функция, Γ-функция Эйлера. А.Лежандр (1814).

Гамма-функция – математическая функция, которая расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z). Г-функция впервые введена Леонардом Эйлером в 1729 году; она определяется формулой:

Через Г-функцию выражается большое число интегралов, бесконечных произведений и сумм рядов. Широко используется в аналитической теории чисел. Название «Гамма-функция» и обозначение Γ(z) предложено французским математиком Адриеном Мари Лежандром в 1814 году.

Бета-функция, В-функция, В-функция Эйлера. Ж.Бине (1839).

Функция двух переменных p и q, определяемая при p>0, q>0 равенством:

В(p, q) = 0 ∫ 1 х р–1 (1–х) q–1 dx.

Бета-функцию можно выразить через Γ-функция: В(p, q) = Γ(p)Г(q)/Г(p+q). Подобно тому как гамма-функция для целых чисел является обобщением факториала, бета-функция, в некотором смысле, является обобщением биномиальных коэффициентов.

Название «бета-функция» и обозначение В(p, q) ввёл в 1839 году французский математик, механик и астроном Жак Филипп Мари Бине.

Оператор Лапласа, лапласиан. Р.Мёрфи (1833).

Оператор Гамильтона, набла-оператор, гамильтониан. О.Хевисайд (1892).

Векторный дифференциальный оператор вида

∇ = ∂/∂x · i + ∂/∂y · j + ∂/∂z · k,

где i, j, и k – координатные орты. Через оператор набла естественным способом выражаются основные операции векторного анализа, а так же оператор Лапласа.

В 1853 году ирландский математик Уильям Роуэн Гамильтон ввёл этот оператор и придумал для него символ ∇ в виде перевёрнутой греческой буквы Δ (дельта). У Гамильтона острие символа указывало налево, позже в работах шотландского математика и физика Питера Гатри Тэйта символ приобрёл современный вид. Гамильтон назвал этот символ словом «атлед» (слово «дельта», прочитанное наоборот). Позднее английские учёные, в том числе Оливер Хевисайд, стали называть этот символ «набла», по названию буквы ∇ в финикийском алфавите, где она и встречается. Происхождение буквы связано с музыкальным инструментом типа арфы, ναβλα (набла) по-древнегречески означает «арфа». Оператор получил название оператора Гамильтона, или оператора набла.

Функция. И.Бернулли (1718), Л.Эйлер (1734).

Равенство. Р.Рекорд (1557).

Знак равенства предложил уэльский врач и математик Роберт Рекорд в 1557 году; начертание символа было намного длиннее нынешнего, так как имитировало изображение двух параллельных отрезков. Автор пояснил, что нет в мире ничего более равного, чем два параллельных отрезка одинаковой длины. До этого в античной и средневековой математике равенство обозначалось словесно (например est egale). Рене Декарт в XVII веке при записи стал использовать æ (от лат. aequalis), а современный знак равенства он использовал чтобы указать, что коэффициент может быть отрицательным. Франсуа Виет знаком равенства обозначал вычитание. Символ Рекорда получил распространение далеко не сразу. Распространению символа Рекорда мешало то обстоятельство, что с античных времён такой же символ использовался для обозначения параллельности прямых; в конце концов было решено символ параллельности сделать вертикальным. В континентальной Европе знак » = » был введён Готфридом Лейбницем только на рубеже XVII–XVIII веков, то есть более чем через 100 лет, после смерти впервые использовавшего его для этого Роберта Рекорда.

Примерно равно, приблизительно равно. А.Гюнтер (1882).

Знак » ≈ » ввёл в использование как символ отношения «примерно равно» немецкий математик и физик Адам Вильгельм Зигмунд Гюнтер в 1882 году.

Больше, меньше. Т.Гарриот (1631).

Эти два знака ввёл в использование английский астроном, математик, этнограф и переводчик Томас Гарриот в 1631 году, до этого использовали слова «больше» и «меньше».

Сравнимость. К.Гаусс (1801).

Сравнение – соотношение между двумя целыми числами n и m, означающее, что разность n–m этих чисел делится на заданное целое число а, называемое модулем сравнения; пишется: n≡m(mod а) и читается «числа n и m сравнимы по модулю а». Например, 3≡11(mod 4), так как 3–11 делится на 4; числа 3 и 11 сравнимы по модулю 4. Сравнения обладают многими свойствами, аналогичными свойствам равенств. Так, слагаемое, находящееся в одной части сравнения можно перенести с обратным знаком в другую часть, а сравнения с одним и тем же модулем можно складывать, вычитать, умножать, обе части сравнения можно умножать на одно и то же число и др. Например,

3≡9+2(mod 4) и 3–2≡9(mod 4)

– одновременно верные сравнения. А из пары верных сравнений 3≡11(mod 4) и 1≡5(mod 4) следует верность следующих:

В теории чисел рассматриваются методы решения различных сравнений, т.е. методы отыскания целых чисел, удовлетворяющих сравнениям того или иного вида. Cравнения по модулю впервые использовались немецким математиком Карлом Гауссом в его книге «Арифметические исследования» 1801 года. Он же предложил утвердившуюся в математике символику для сравнений.

Тождество. Б.Риман (1857).

Тождество – равенство двух аналитических выражений, справедливое для любых допустимых значений входящих в него букв. Равенство a+b = b+a справедливо при всех числовых значениях a и b, и поэтому является тождеством. Для записи тождеств в некоторых случаях с 1857 года применяется знак » ≡ » (читается «тождественно равно»), автором которого в таком использовании, является немецкий математик Георг Фридрих Бернхард Риман. Можно записать a+b ≡ b+a.

Перпендикулярность. П.Эригон (1634).

Параллельность. У.Оутред (посмертное издание 1677 года).

Параллельность – отношение между некоторыми геометрическими фигурами; например, прямыми. Определяется по-разному в зависимости от различных геометрий; например, в геометрии Евклида и в геометрии Лобачевского. Знак параллельности известен с античных времён, его использовали Герон и Папп Александрийский. Сначала символ был похож на нынешний знак равенства (только более протяжённый), но с появлением последнего, во избежание путаницы, символ был повёрнут вертикально ||. В таком виде он появился впервые в посмертном издании работ английского математика Уильяма Оутреда в 1677 году.

Пересечение, объединение. Дж.Пеано (1888).

Пересечение множеств – это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Объединение множеств – множество, содержащее в себе все элементы исходных множеств. Пересечением и объединением называются и операции над множествами, ставящие в соответствие некоторым множествам новые по указанным выше правилам. Обозначаются ∩ и ∪, соответственно. Например, если

Автором знаков ∩ и ∪ является итальянский математик Джузеппе Пеано. Впервые они были использованы в 1888 году.

Содержится, содержит. Э.Шрёдер (1890).

Если А и В – два множества и в А нет элементов, не принадлежащих В, то говорят что А содержится в В. Пишут А⊂В или В⊃А (В содержит А). Например,

Символы «содержится» и «содержит» появились в 1890 году у немецкого математика логика Эрнста Шрёдера.

Принадлежность. Дж.Пеано (1895).

Если а – элемент множества А, то пишут а∈А и читают «а принадлежит А». Если а не является элементом множества А, пишут а∉А и читают «а не принадлежит А». Вначале отношения «содержится» и «принадлежит» («является элементом») не различали, но со временем эти понятия потребовали разграничения. Знак принадлежности ∈ впервые стал использовать итальянский математик Джузеппе Пеано в 1895 году. Символ ∈ происходит от первой буквы греческого слова εστι – быть.

Квантор всеобщности, квантор существования. Г.Генцен (1935), Ч.Пирс (1885).

Квантор – общее название для логических операций, указывающих область истинности какого-либо предиката (математического высказывания). Философы давно обращали внимание на логические операции, ограничивающие область истинности предиката, однако не выделяли их в отдельный класс операций. Хотя кванторно-логические конструкции широко используются как в научной, так и в обыденной речи, их формализация произошла только в 1879 году, в книге немецкого логика, математика и философа Фридриха Людвига Готлоба Фреге «Исчисление понятий». Обозначения Фреге имели вид громоздких графических конструкций и не были приняты. Впоследствии было предложено множество более удачных символов, но общепринятыми стали обозначения ∃ для квантора существования (читается «существует», «найдётся»), предложенное американским философом, логиком и математиком Чарльзом Пирсом в 1885 году, и ∀ для квантора всеобщности (читается «любой», «каждый», «всякий»), образованное немецким математиком и логиком Герхардом Карлом Эрихом Генценом в 1935 году по аналогии с символом квантора существования (перевёрнутые первые буквы английских слов Existence (существование) и Any (любой)). Например, запись

читается так: «для любого ε>0 существует δ>0 такое, что для всех х, не равных х0 и удовлетворяющих неравенству |x–x0|

Пустое множество. Н.Бурбаки (1939).

Множество, не содержащее ни одного элемента. Знак пустого множества был введён в книгах Николя Бурбаки в 1939 году. Бурбаки – коллективный псевдоним группы французских математиков, созданной в 1935 году. Одним из участников группы Бурбаки был Андре Вейль – автор символа Ø.

Что и требовалось доказать. Д.Кнут (1978).

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как пишется знак принадлежит в математике, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как пишется знак принадлежит в математике", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как пишется знак принадлежит в математике:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *