Главная » Правописание слов » Как пишется математический модуль в питоне

Слово Как пишется математический модуль в питоне - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Математические модули в Python: Math и Cmath

При написании программ в повседневной жизни мы обычно сталкиваемся с ситуациями, когда нам нужно использовать небольшую математику, чтобы выполнить задачу. Как и другие языки программирования, Python предоставляет различные операторы для выполнения базовых вычислений, таких как * для умножения, % для модуля и // для деления пола.

Если вы пишете программу для выполнения определенных задач, таких как изучение периодического движения или моделирования электрических цепей, вам нужно будет работать с тригонометрическими функциями, а также с комплексными числами. Хотя вы не можете использовать эти функции напрямую, вы можете получить к ним доступ, включив сначала два математических модуля. Эти модули являются math и cmath.

Арифметические функции

Вот несколько арифметических функций, которые предлагает Python:

Тригонометрические функции

Эти функции связывают углы треугольника по бокам. У них много приложений, в том числе изучение треугольников и моделирование периодических явлений, таких как звуковые и световые волны. Имейте в виду, что угол, который вы предоставляете, находится в радианах.

Вы знакомы с теоремой Пифагора? В нем говорится, что квадрат гипотенузы (сторона, противоположная прямому углу) равна сумме квадратов двух других сторон. Гипотенуза также является самой большой стороной прямоугольного треугольника. Математический модуль обеспечивает функцию hypot(a, b) для вычисления длины гипотенузы.

Гиперболические функции

Гиперболические функции являются аналогами тригонометрических функций, которые основаны на гиперболе вместо круга. В тригонометрии точки (cos b, sin b) представляют точки единичного круга. В случае гиперболических функций точки (cosh b, sinh b) представляют точки, которые образуют правую половину равносторонней гиперболы.

Степень и логарифмические функции

Вероятнее всего, вы чаще всего сталкиваетесь со степенями и логарифмами, чем с гиперболическими или тригонометрическими функциями. К счастью, модуль math предоставляет множество функций, которые помогут нам вычислить логарифмы.

Сложные числа

Комплексные числа имеют множество приложений, таких как моделирование электрических цепей, динамика жидкости и анализ сигналов. Если вам нужно работать над любой из этих вещей, модуль cmath не разочарует вас.

Заключение

Все эти функции, о которых мы говорили выше, имеют свои конкретные приложения. Например, вы можете использовать функцию factorial(x) для решения проблем с перестановкой и комбинацией. Вы можете использовать тригонометрические функции для преобразования вектора в декартовы координаты. Вы также можете использовать тригонометрические функции для имитации периодических функций, таких как звуковые и световые волны.

Аналогично, кривая веревки, висящая между двумя полюсами, может быть определена с использованием гиперболической функции. Поскольку все эти функции доступны непосредственно в модуле math, очень легко создавать небольшие программы, которые выполняют все эти задачи.

Надеюсь, вам понравился этот урок. Если у вас есть какие-либо вопросы, дайте мне знать в комментариях.

Источник

Math — математические функции в Python

Что такое модуль?

В C и C++ есть заголовочные файлы, в которых хранятся функции, переменные классов и так далее. При включении заголовочных файлов в код появляется возможность не писать лишние строки и не использовать одинаковые функции по несколько раз. Аналогично в Python для этого есть модули, которые включают функции, классы, переменные и скомпилированный код. Модуль содержит группу связанных функций, классов и переменных.

Функции представления чисел

ceil() и floor() — целая часть числа

Сeil() и floor() — функции общего назначения. Функция ceil округляет число до ближайшего целого в большую сторону. Функция floor убирает цифры десятичных знаков. Обе принимают десятичное число в качестве аргумента и возвращают целое число.

Пример:

Функция fabs() — абсолютное значение

Пример:

factorial() — функция факториала

Эта функция принимает положительное целое число и выводит его факториал.

Пример:

Примечание: при попытке использовать отрицательное число, возвращается ошибка значения ( Value Error ).

Пример:

Функция fmod() — остаток от деления

Пример:

Функция frexp()

Пример:

Функция fsum() — точная сумма float

Вычисляет точную сумму значений с плавающей точкой в итерируемом объекте и сумму списка или диапазона данных.

Пример:

Функции возведения в степень и логарифма

Функция exp()

Пример:

Функция expm1()

Пример:

Функция log() — логарифм числа

Функция log(x[,base]) находит логарифм числа x по основанию e (по умолчанию). base — параметр опциональный. Если нужно вычислить логарифм с определенным основанием, его нужно указать.

Пример:

Функция log1p()

Пример:

Функция log10()

Вычисляет логарифм по основанию 10.

Пример:

Функция pow() — степень числа

Пример:

Функция sqrt() — квадратный корень числа

Эта функция используется для нахождения квадратного корня числа. Она принимает число в качестве аргумента и находит его квадратный корень.

Пример:

Тригонометрические функции

В Python есть следующие тригонометрические функции.

Функция Значение
sin принимает радиан и возвращает его синус
cos принимает радиан и возвращает его косинус
tan принимает радиан и возвращает его тангенс
asin принимает один параметр и возвращает арксинус (обратный синус)
acos принимает один параметр и возвращает арккосинус (обратный косинус)
atan принимает один параметр и возвращает арктангенс (обратный тангенс)
sinh принимает один параметр и возвращает гиперболический синус
cosh принимает один параметр и возвращает гиперболический косинус
tanh принимает один параметр и возвращает гиперболический тангенс
asinh принимает один параметр и возвращает обратный гиперболический синус
acosh принимает один параметр и возвращает обратный гиперболический косинус
atanh принимает один параметр и возвращает обратный гиперболический тангенс

Пример:

Функция преобразования углов

Эти функции преобразуют угол. В математике углы можно записывать двумя способами: угол и радиан. Есть две функции в Python, которые конвертируют градусы в радиан и обратно.

Пример:

Математические константы

Источник

Модуль числа в Python

Очень часто возникает необходимость вычисления модуля числа в Python. Рассмотрим, что такое модуль числа, какие есть способы его вычисления. Так же отдельно коснемся комплексных чисел.

Модуль числа

Часто в программировании требуется вычислить абсолютное значение числа. Иначе говоря, отбросить знак.

При вычислении модуля возможны 3 ситуации:

Но это все справедливо только для действительных чисел. Чему же тогда будет равен модуль комплексных?

Комплексное число состоит из действительной составляющей и мнимой. Геометрически это можно представить как 2 ортогональные оси: действительную и мнимую. Отмечаем на координатных осях требуемую точку. Модулем будет длина отрезка, проведенного из начала координат в эту точку.

Вычисление

Вычислять модуль можно следующими способами:

Все эти функции работают как в Python 2, так и в Python 3.

Для вычисления в Python модуля числа используется функция abs. Результат функции того же типа, которого был аргумент.

Свое решение

Если по каким то причинам нет возможности или желания использовать стандартные функции, то можно написать свое решение.

Например, можно вычислить воспользоваться тернарным оператором.

На основе такого условия сделаем свою функцию.

Модуль комплексного числа

Мы разобрались как происходит вычисление с действительными числами. Теперь посмотрим, как в языке программирования Python можно получить модуль комплексного.

Функцией fabs мы не сможем воспользоваться. Если попытаемся это сделать, то получим ошибку приведения комплексного числа к действительному (TypeError).

А вот с помощью abs преобразование удается.

Или же напишем свою функцию:

Результаты получились одинаковыми. Но нам все равно пришлось подключить библиотеку math для вычисления квадратного корня.

Источник

Математический модуль math в Python – список функций

Математический модуль math в Python представлен наиболее известными математическими функциями, которые включают в себя тригонометрические функции, функции представления, логарифмические функции и т. д. Кроме того, он также определяет две математические константы, т. е. pie и число Эйлера.

Pie(n): это хорошо известная математическая константа, определяемая как отношение длины окружности к диаметру круга. Его значение составляет 3,141592653589793.

Число Эйлера(е): определяется как основание натурального логарифма, и его значение составляет 2,718281828459045.

Ниже приведены различные математические модули:

math.log()

Этот метод возвращает натуральный логарифм заданного числа. Он рассчитывается по базе e.

math.log10()

Этот метод возвращает базовый логарифм 10 заданного числа и называется стандартным логарифмом.

math.exp()

Этот метод возвращает число с плавающей запятой после увеличения e до заданного числа.

math.pow(x,y)

Этот метод возвращает степень x, соответствующую значению y. Если значение x отрицательно или y не является целым числом, возникает ошибка ValueError.

math.floor(x)

Этот метод возвращает минимальное значение x. Он возвращает значение x, меньшее или равное.

math.ceil(x)

Метод возвращает значение ceil x. Возвращает значение, большее или равное x.

math.fabs(x)

Метод возвращает абсолютное значение x.

math.factorial()

Возвращает факториал заданного числа x. Если x не является целым, возникает ошибка ValueError.

math.modf(x)

Возвращает дробную и целую части x. Он имеет знак x – float.

Python предоставляет несколько математических модулей, которые могут выполнять сложную задачу в одной строке кода.

Источник

Модуль числа в Python — функции abs() и math.fabs()

З апускаю китайскую реплику «ТАРДИС», и вот мы в пятом классе. На доске нарисована числовая ось, а на ней выделен отрезок. Его начало в точке 4, а конец — в 8. Учительница говорит, что длину отрезка можно найти путём вычитания координаты начала отрезка из координаты его конца. Вычитаем, получаем 4, и радуемся — мы нашли длину. Ура! ?

Перемещаемся на год вперёд, и там происходит странное: учительница выделяет мелом другой отрезок, но делает это в каком-то неправильном месте — левее точки с цифрой «0». Теперь перед нами старая задача, но с новыми числами и даже буквами: A, B, минус 4 и минус 8. Мы начинаем искать длину отрезка AB = [-4;-8]:

Переводим непонимающий взгляд с получившейся отрицательной длины на довольную улыбающуюся учительницу, а затем на доску. Там наверху, рядом с сегодняшней датой, написана тема урока: «Модуль числа».

Что такое модуль числа

Модуль числа называют абсолютной величиной.

Для вещественных чисел модуль определяется так:

Т.е. в любом случае, модуль — число большее или равное 0. Поэтому отрицательная длина в примере хитрой учительницы должна была быть взята по модулю:

Тогда дети бы увидели, что геометрический смысл модуля — есть расстояние. Это справедливо и для комплексных чисел, однако формальное определение для них отличается от вещественного:

, где z — комплексное число: z = x + i y.

В то время как math.fabs() может оперировать только вещественными аргументами, abs() отлично справляется и с комплексными. Для начала покажем, что abs в python работает строго в соответствии с математическим определением.

# для вещественных чисел print(abs(-1)) print(abs(0)) print(abs(1)) > 1 > 0 > 1

Как видно, с вещественными числами всё в порядке. Перейдём к комплексным.

# для комплексных чисел print(complex(-3, 4)) print(abs(complex(-3, 4))) > (-3+4j) > 5.0

Если вспомнить, что комплексное число выглядит так: z = x + i y, а его модуль вычисляется по формуле:

Можно заметить, что abs() возвращает значения разных типов. Это зависит от типа аргумента:

print(type(abs(1))) > print(type(abs(1.0))) > print(type(abs(complex(1.0, 1.0))))

print(type(math.fabs(complex(2,3)))) > TypeError: can’t convert complex to float

Для начала работы с fabs() необходимо импортировать модуль math с помощью следующей инструкции:

Мы уже выяснили, что fabs() не работает с комплексными числами, поэтому проверим работу функции на вещественных:

print(math.fabs(-10)) print(math.fabs(0)) print(math.fabs(10)) > 10.0 > 0.0 > 10.0

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как пишется математический модуль в питоне, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как пишется математический модуль в питоне", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как пишется математический модуль в питоне:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *