Уравнение касательной к графику функции
А что будет, если производная в точке x 0 не существует? Возможны два варианта:
Уравнение касательной
Итак, пусть дана функция y = f ( x ), которая имеет производную y = f ’( x ) на отрезке [ a ; b ]. Тогда в любой точке x 0 ∈ ( a ; b ) к графику этой функции можно провести касательную, которая задается уравнением:
Здесь f ’( x 0) — значение производной в точке x 0, а f ( x 0) — значение самой функции.
Уравнение касательной: y = f ’( x 0) · ( x − x 0) + f ( x 0). Точка x 0 = 2 нам дана, а вот значения f ( x 0) и f ’( x 0) придется вычислять.
Для начала найдем значение функции. Тут все легко: f ( x 0) = f (2) = 2 3 = 8;
Теперь найдем производную: f ’( x ) = ( x 3 )’ = 3 x 2 ;
Подставляем в производную x 0 = 2: f ’( x 0) = f ’(2) = 3 · 2 2 = 12;
Итого получаем: y = 12 · ( x − 2) + 8 = 12 x − 24 + 8 = 12 x − 16.
Это и есть уравнение касательной.
Задача. Составить уравнение касательной к графику функции f ( x ) = 2sin x + 5 в точке x 0 = π /2.
В этот раз не будем подробно расписывать каждое действие — укажем лишь ключевые шаги. Имеем:
f ( x 0) = f ( π /2) = 2sin ( π /2) + 5 = 2 + 5 = 7;
f ’( x ) = (2sin x + 5)’ = 2cos x ;
f ’( x 0) = f ’( π /2) = 2cos ( π /2) = 0;
y = 0 · ( x − π /2) + 7 ⇒ y = 7
В последнем случае прямая оказалась горизонтальной, т.к. ее угловой коэффициент k = 0. Ничего страшного в этом нет — просто мы наткнулись на точку экстремума.
Уравнение касательной к графику функции
п.1. Уравнение касательной
п.2. Алгоритм построения касательной
На входе: уравнение кривой \(y=f(x)\), абсцисса точки касания \(x_0\).
Шаг 1. Найти значение функции в точке касания \(f(x_0)\)
Шаг 2. Найти общее уравнение производной \(f’ (x)\)
Шаг 3. Найти значение производной в точке касания \(f'(x_0 )\)
Шаг 4. Записать уравнение касательной \(y=f’ (x_0)(x-x_0)+f(x_0)\), привести его к виду \(y=kx+b\)
На выходе: уравнение касательной в виде \(y=kx+b\)
Пусть \(f(x)=x^2+3\). Найдем касательную к этой параболе в точке \(x_0=1\). |
п.3. Вертикальная касательная
Не путайте вертикальные касательные с вертикальными асимптотами.
Вертикальная асимптота проходит через точку разрыва 2-го рода \(x_0\notin D\), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
А вертикальная касательная проходит через точку \(x_0\in D\), входящую в область определения. График функции и касательная имеют одну общую точку \((x_0,y_0)\).
Вертикальные касательные характерны для радикалов вида \(y=\sqrt[n]
Пусть \(f(x)=\sqrt[5] Найдем касательную к этой кривой в точке \(x_0=1\). |
\(f(x_0)=\sqrt[5]<1-1>+1=1\)
\(f'(x)=\frac15(x-1)^<\frac15-1>+0=\frac15(x-1)^<-\frac45>=\frac<1><5(x-1)^<\frac45>> \)
\(f'(x_0)=\frac<1><5(1-1)^<\frac45>>=\frac10=+\infty\)
В точке \(x_0\) проходит вертикальная касательная.
Её уравнение: \(x=1\)
Ответ: \(y=2x+2\)
п.4. Примеры
Пример 1. Для функции \(f(x)=2x^2+4x\)
a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.
б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.
в) найдите, в какой точке касательная будет параллельна прямой \(2x+y-6=0\). Напишите уравнение этой касательной.
Найдем угловой коэффициент заданной прямой: \(y=-2x+6\Rightarrow k=-2\). Касательная должна быть параллельной, значит, её угловой коэффициент тоже \(k=-2\). Получаем уравнение: \begin |
г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.
У горизонтальной прямой \(k=0\). Получаем уравнение: \(f'(x_0)=0\). \begin |
Ответ: а) \(y=4x\) и \(y=-4x-8\); б) \(y=x-\frac98\); в) \(2x+y+\frac92=0\); г) \(y=-2\)
Пример 3*. Найдите точку, в которой касательная к графику функции \(f(x)=\frac
Угловой коэффициент данной прямой \(k_1=11\).
Угловой коэффициент перпендикулярной прямой \(k_2=-\frac<1>
Уравнение касательной при \(x_0=-14\) \begin
Ответ: точка касания (-14;-4), уравнение \(y=-\frac
и точка касания (8;-2), уравнение \(-\frac
Пример 4*. Найдите уравнения общих касательных к параболам \(y=x^2-5x+6\) и \(y=x^2+x+1\). Укажите точки касания.
Пример 5*. Докажите, что кривая \(y=x^4+3x^2+2x\) не пересекается с прямой \(y=2x-1\), и найдите расстояние между их ближайшими точками.
Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом \(k=2\), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой \(y=2x-1\).
Строим уравнение касательной. По условию: \(f'(x)=4x^3+6x+2=2\) \begin
Уравнение касательной: \(y=2(x-0)+0=2x\)
Ищем расстояние между двумя параллельными прямыми: \(y=2x\) и \(y=2x-1\). Перпендикуляр из точки (0;0) на прямую \(y=2x-1\) имеет угловой коэффициент \(k=-\frac12\), его уравнение: \(y=-\frac12 x+b\). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и \(b=0\). |
Уравнение перпендикуляра: \(y=-\frac x2\).
Находим точку пересечения прямой \(y=2x-1\) и перпендикуляра \(y=-\frac x2\): \begin
Находим расстояние \(OA=\sqrt<0,4^2+(-0,2)^2>=0,2\sqrt<2^2+1^2>=\frac<\sqrt<5>><5>\)
Ответ: \(\frac<\sqrt<5>><5>\)
Уравнение касательной и уравнение нормали к графику функции
Как получить уравнение касательной и уравнение нормали
Уравнение касательной выводится из уравнения прямой.
Отсюда получаем следующую запись:
Таким образом, можем заменить k на f ‘(x 0 ) и получить следующее уравнение касательной к графику функции:
В задачах на составление уравнения касательной к графику функции (а мы уже скоро к ним перейдём) требуется привести получившееся по вышеприведённой формуле уравнение к уравнению прямой в общем виде. Для этого нужно все буквы и числа перенести в левую часть уравнения, а в правой части оставить ноль.
Переходим к примерам. Для решений потребуется таблица производных (откроется в новом окне).
Для разминки первый же пример прелагается решить самостоятельно, а затем посмотреть решение. Есть все основания надеяться, что для наших читателей эта задача не будет «холодным душем».
Решаем задачи вместе
Пример 1. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Теперь у нас есть всё, что требуется подставить в приведённую в теоретической справке запись, чтобы получить уравнение касательной. Получаем
В этом примере нам повезло: угловой коэффициент оказался равным нулю, поэтому отдельно приводить уравнение к общему виду не понадобилось. Теперь можем составить и уравнение нормали:
На рисунке ниже: график функции бордового цвета, касательная зелёного цвета, нормаль оранжевого цвета.
Пример 2. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Подставляем все полученные данные в «формулу-болванку» и получаем уравнение касательной:
Приводим уравнение к общему виду (все буквы и числа, отличные от нуля, собираем в левой части, а в правой оставляем ноль):
Составляем уравнение нормали:
Пример 3. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Находим уравнение касательной:
Перед тем, как привести уравнение к общему виду, нужно его немного «причесать»: умножить почленно на 4. Делаем это и приводим уравнение к общему виду:
Составляем уравнение нормали:
Решить задачи самостоятельно, а затем посмотреть решения
Пример 4. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Пример 5. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Снова решаем задачи вместе
Пример 6. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
Найдём производную функции:
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Пример 7. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Получаем уравнение касательной:
Приводим уравнение к общему виду:
Составляем уравнение нормали:
Пример 8. Составить уравнение касательной и уравнение нормали к графику функции , если абсцисса точки касания .
Решение. Найдём ординату точки касания:
.
.
Найдём значение производной в точке касания, то есть угловой коэффициент касательной:
.
Решение уравнения касательной через график производной функции
Геометрический смысл производной функции в точке
Вывод формулы имеет следующий вид:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Графически производную можно изобразить в виде кривой таким образом:
Разберем типичный пример в доказательство определению. Попробуем найти производную записанным ранее методом \((x^2+1)\) :
Согласно историческим фактам, одновременно с написанием работы Ньютона по изучению процессов в физике и формулировке понятия производной Лейбницем было введено определение производной с помощью геометрических закономерностей. Узнать, в чем состоит геометрический смысл производной, можно с помощью исследования графика функции y=f(x) на плоскости:
Приращение функции относится к приращению аргумента, как тангенс угла, образованный секущей и положительным направлением оси абсцисс:
Когда значение \(\triangle x\) стремится к нулю, точка Р1 на изображенном графике смещается в сторону точки Р. Положение секущей в таком случае меняется по отношению к графику.
Секущая занимает предельное положение в виде прямой, когда приращение стремится к нулю. Точки Р и Р1 на данной прямой будут совмещены. Рассматриваемая прямая является касательной к графику в точке Р.
Запишем следующее соотношение:
\(tg\beta \rightarrow tg\alpha, если \triangle x\rightarrow 0\)
Геометрический смысл производной: производная функции в точке обладает значением, численно равным тангенсу угла наклона касательной к функции в рассматриваемой точке.
Известным фактом является то, что какая-либо прямая обладает уравнением, которое можно записать в общем виде:
В уравнении касательной к функции в некой точке Р коэффициент k определяется, как значение производной в точке х0:
В процессе решения практических заданий нередко можно встретить примеры, где требуется использовать геометрический смысл производной. Одной из подобных задач является изучение графически заданной функции в сравнении с графиком производной искомой функции.
Уравнение касательной к графику функций
В результате угловой коэффициент касательной будет определен по формуле:
В качестве наглядного примера изобразим график по исходным данным:
Алгоритм составления уравнения касательной к графику функции
Составить уравнение, с помощью которого задана касательная к графику функции, несложно. Нужно лишь следовать следующему алгоритму и выполнять действия в таком порядке:
Рассмотрим конкретный пример. Попробуем составить уравнение касательной к функции \(f\left( x \right)=<
Примеры решения задач
Функция \( y=\mathsf
Согласно определению значения производной в точке касания, запишем:
\(f’\left( x \right)=k=\
В результате значение производной функции \(\mathsf
Изображено два графика функций:
Нужно вычислить все значения, которые принимает параметр а при пересечении рассматриваемых графиков только в одной точке.
Функция \(f(x)\) на графике будет иметь вид параболы, пересекающей ось абсцисс в следующих точках:
Данная парабола имеет одну точку пересечения с осью ординат:
Если зафиксировать а, то при каждом таком значении \(ay+5x+6a=0\) будет иметь вид прямой:
В результате графики обладают единственной общей точкой при таких значениях a, при которых прямая y будет касаться параболы. Касание в точке \(x_o\) возможно при следующих условиях:
Имеется некое уравнение:
Требуется определить все вероятные значения, которыми обладает параметр а, определяющие для данного уравнения единственное решение.
Проанализируем функцию и пучок, состоящий из прямых:
Точка максимума равна:
Точка минимума равна:
Запишем следующие соотношения:
Каждая из прямых \(y=ax+8a\) пересекает точку (-8;0). Выявим такие случаи, при которых прямая у будет касаться графика функции f(x) в точке касания \(x_o.\) Подберем под заданные условия значения параметра:
\(\begin
В результате уравнение \( f(x)=y\) обладает только одним значением, когда параметр а имеет значения, при которых прямые y проходят в заштрихованных участках. Отметим, что граничный случай a=77 является посторонним.
График в уменьшенном масштабе:
Ответ: \(a\in (-\infty; 77).\)
Нужно найти такие значения параметра а, при которых данная система обладает только одним решением.
Запишем первое из уравнений, как:
Заметим, с помощью этого уравнения можно задать множество точек А, принадлежащих отрезку ВС. Если а=0, то рассматриваемое уравнение задает только одну точку O(0;0).
С помощью второго неравенства можно изобразить окружность, центр которой находится в точке O(0;0), а ее радиус равен \(R=3\sqrt2.\)
Система будет иметь лишь одно решение при параметре а≠0 — в том случае, когда отрезок касается окружности:
\(\dfrac12\cdot OB\cdot OC=S_<\triangle OBC>=\dfrac12\cdot OK\cdot BC \quad\Rightarrow\quad a\cdot a=3\sqrt2\cdot a\sqrt2 \quad\Rightarrow\quad a=6.\)