Главная » Правописание слов » Напишите где у растений накапливаются продукты обмена веществ и как происходит их удаление

Слово Напишите где у растений накапливаются продукты обмена веществ и как происходит их удаление - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

ГДЗ биология 6 класс Пасечник, Суматохин, Калинова Просвещение 2019-2020 Задание: 35 Выделение у растений и животных

Стр. 146. Вспомните

№ 1. Как растения удаляют ненужные вещества?

Накапливание продуктов обмена у растений происходит в вакуолях клеток, в специальных хранилищах, например, в млечных ходах у молочая или в смоляных ходах у хвойных. У многолетних растений для этого служат кора, а иногда древесина.

Удаление всех ненужных веществ у растений происходит через корни и опавшие листья. К осени в клетках листьев собирается большое количество вредных веществ, которые естественным путем удаляются из растения.

Через специальные железы в структуре растений выделяются в атмосферу летучие вещества, включая эфирные масла. Так происходит, например, у мяты, эвкалипта, мелиссы. Через устьица и чечевички коры у деревьев происходит выделение углекислого газа.

Выделение сахаров у растений происходит при помощи нектарников. У большинства представителей этого класса они находятся в цветках, но есть виды, у которых нектарники располагаются на листьях и стеблях.

№ 2. Как удаляются ненужные продукты жизнедеятельности у животных?

Все живые организмы в процессе своей жизнедеятельности образуют конечные продукты обмена, которые в дальнейшем выделяются в окружающую среду. Каждое животное стремится не только сохранить нужные ему питательные вещества, но также и удалить из своего организма результаты обмена, совершенно бесполезные, а иногда даже опасные для него. У разных животных этот процесс происходит по-разному.

Например, у амеб избавление от излишков воды происходит при помощи сократительной вакуоли, которая с определенной периодичностью сокращается и просто выталкивает собравшуюся в ней жидкость. Также через поверхность тела происходит удаление ненужных веществ у медуз и у гидр.

Функцию выведения у большинства многоклеточных животных выполняют специальные органы. Например, у дождевого червя для этого предназначены нефридии – специальные канальцы. У насекомых выделение происходит через трубчатые выросты кишечника. Основным органом выделения у всех позвоночных животных являются почки. У млекопитающих и птиц для выведения продуктов переработки в результате обмена веществ имеются потовые железы, кишечник. Также у рыб в процессе выведения углекислого газа участвуют жабры, у птиц и млекопитающих – лёгкие.

Стр. 149. Вопросы после параграфа

№ 1. Где у растений накапливаются продукты обмена веществ?

Продукты обмена веществ у растений накапливаются в клетках, а точнее – в их вакуолях, либо в специальных хранилищах – млечных и смоляных ходах. У многолетних растений накопление органических и неорганических веществ происходит в коре, либо в древесине. Также очень много вредных веществ, которые не нужны растению, собирается в листьях. За период цветения и плодоношения в них оседает много продуктов обмена, которые удаляются из растений в процессе листопада.

№ 2. Как происходит выделение вредных веществ у растений?

В отличие от животных, у растений отсутствует специальная выделительная система, поэтому вредные продукты обмена у них имеют свойство накапливаться в клетках и разных органах. Чаще всего они собираются в вакуолях клетках, специальных хранилищах. Например, в млечных ходах и в смоляных ходах, в коре многолетних деревьев и т.д.

За период созревания, цветения и плодоношения в растениях накапливается большое количество вредных веществ. Удаление их происходит как через корни, так и через листья, которые растения начинают сбрасывать к осени.

Выделение углекислого газа происходит через устьица и чечевички коры. Также различные летучие вещества, включая эфирные масла, выводятся и через специальные железы растений. А вот избавление от сахаров осуществляется через специальные образования – нектарники, которые находятся у большинства растений в цветках, но есть виды, у которых они есть на листьях и стеблях.

№3. Какие продукты обмена веществ выделяются из организма позвоночных животных через лёгкие, кишечник, потовые железы?

Из организма позвоночных животных через лёгкие выводится углекислый газ в процессе дыхания. Через кишечник происходит выведение непереваренных остатков пищи и вещества, которые не усваиваются организмом, в виде каловых масс. Выделение воды, соли и органических веществ происходит через потовые железы.

Стр. 149. Задание

№ 1. Выпишите из текста параграфа новые понятия, найдите их определения в интернет-источниках, энциклопедических словарях.

Новые понятия из текста параграфа:

Листопад – это биологический природный процесс, при котором в определенные периоды года растения массово сбрасывают листья в течение длительного промежутка времени.

Нектарники – это медовики или железы у растений, при помощи которых выделяется сахаристый сок или нектар, привлекающий насекомых или животных для опыления. Они очень разнообразны как по величине, так и по форме, происхождению, расположению на частях цветка. Чаще всего они возникают из эпидермальных и субэпидермальных клеток, которые многократно делятся, становятся меристематическими, образуя железы, разные по форме.

Нефридии – это выделительные органы у всех беспозвоночных животных, которые служат для осморегуляции, извлечения и дальнейшего выведения из их организма вредных продуктов в результате обмена веществ.

№ 2. Используя интернет-источники, научно-популярную литературу, подготовьте сообщение на тему «Значение процессов выделения у живых организмов».

В жизненноважных для любого живого организма процессах обмена всегда образуются конечные продукты, среди которых могут быть и бесполезные соединения, и вещества, которые могут быть вредными для его клеток. Например, в результате расщепления нуклеиновых кислот, аминокислот и прочих азотосодержащих соединений образуются такие вещества, как мочевина и мочевая кислота, аммиак, которые подлежат обязательному выведению из организмов. Также удалению подлежат и углекислый газ, который является результатом дыхания, и яды, которые попадают в организм вместе с воздухом, и излишки воды, гормонов и витаминов.

Как и все живые организмы на нашей планете, растения также выделяют активно или пассивно большое количество минеральных и органических веществ. У них процессы выделения происходят по-разному и через разные органы:

Вымывание дождевыми водами, которые стекают по стволам и листьям, значительное количество минеральных соединений;

Выделение кислорода, углекислого газа, солей, летучих метаболитов через устьица, чечевички коры, специальные железы и приспособления – нектарники;

Выделение через корни большого количества продуктов фотосинтеза, которые содержат целый ряд минеральных веществ, органические кислоты и сахара. Все они используются в дальнейшем симбиотическими организмами и микрофлорой ризосферы;

Сбрасывание листьев, в которых за время цветения и плодоношения происходит накопление балластных и ненужных растению веществ.

У представителей животного мира органы выделения в процессе эволюции стали появляться только на поздних стадиях. Например, у губок и кишечнополостных специальные выделительные органы отсутствуют, а выделение из организма конечных продуктов обмена происходит методом диффузии через поверхность всего тела. Впервые специальные органы для выделения, а именно протонефридии, появляются только у кольчатых червей. Далее у членистоногих, моллюсков и ланцетников органами выделения служат метанефридии, у насекомых и паукообразных – мальпигиевы сосуды, а у позвоночных хордовых животных – почки.

При всем разнообразии органов выделения у разных живых организмов в основе их функционирования лежит два основных процесса. Это ультрафильтрация и активный транспорт. При ультрафильтрации происходит прохождение жидкости под давлением через полупроницаемую мембрану, которая пропускает воду и низкомолекулярные растворенные в ней вещества, но в то же время удерживает белки и другие крупные молекулы. Благодаря активному транспорту осуществляется движение уже растворенных веществ против электрохимического и концентрационного градиентов, что связано с затратами энергии. В выделительных органах фильтрационная система дополнена еще и процессами активного транспорта. Значение полноценной работы выделительной системы в любом животном организме позволяет:

Контролировать объемы крови и прочих жидкостей внутренней среды;

Поддерживать кислотно-щелочное равновесие;

Обеспечивать постоянство осмотического давления крови и других жидкостей тела, а также ионного состава жидкостей внутренней среды организма;

Выводить все чужеродные вещества и конечные продукты азотистого обмена;

Стр. 149. Подумайте

Чем различается выделение веществ у растений и животных? Ответ представьте в виде таблицы.

Источник

§ 32. Выделение у растений и животных

1. Как растения удаляют ненужные вещества? 2. Как удаляются ненужные продукты жизнедеятельности у животных?

Организмы в процессе жизнедеятельности образуют конечные продукты обмена, которые выделяются в окружающую среду. Освобождение от них называют выделением. У растений и грибов, в отличие от животных, нет специальной выделительной системы. Продукты обмена у них могут накапливаться в клетках и органах. Например, плодовые тела старых шляпочных грибов содержат ядовитые вещества, поэтому их нельзя употреблять в пищу.

Выделение у растений

У растений продукты обмена веществ накапливаются в вакуолях клеток, в специальных хранилищах, например в смоляных ходах у хвойных, млечных ходах у одуванчика и молочая. У многолетних растений они накапливаются в коре, иногда в древесине. Удаление продуктов жизнедеятельности у растений происходит через корни и опавшие листья. Установлено, что к осени в клетках листьев накапливаются вредные для растения вещества, которые удаляются из растения вместе с опадающими листьями.

Через устьица и чечевички коры, например березы, из растения удаляется углекислый газ (см. рис. 69).

Выделение сахаров у растений осуществляется специальными образованиями — нектарниками. У большинства растений они находятся в цветках, а у некоторых — на стеблях и листьях. Нектар обладает бактерицидными свойствами и защищает завязь цветка от микроорганизмов. К тому же нектар наряду с окрашенным венчиком и ароматом цветков является важным приспособлением для привлечения насекомых, осуществляющих перекрёстное опыление.

Через специальные железы растений в атмосферу выделяются летучие вещества, в том числе эфирные масла. К эфиромасличным растениям относятся пеларгония, мята, мелисса, эвкалипт. Многие из них используются в лекарственных целях, а также для ароматизации продуктов, изготовления парфюмерной продукции.

Опавшие листья растений содержат неорганические и органические вещества и представляют собой очень ценное удобрение. Поэтому садоводы закладывают листья в компостные кучи. Благодаря опавшим листьям почва в лесу ежегодно обогащается перегноем. Вот почему их не надо жечь. Вполне понятно, что сбор опавших листьев и вообще удаление лесной подстилки в лесу отрицательно сказываются па жизни деревьев.

В городах, где почва и воздух загрязнены выхлопными газами автомобилей, выбросами промышленных предприятий, в листьях накапливаются ядовитые вещества. Поэтому их нельзя использовать для приготовления компоста, а почву следует регулярно удобрять.

У растений вредные продукты жизнедеятельности удаляются во время листопада. Листопад обычен у деревьев и кустарников. Изредка встречается у трав, например у крапивы, недотроги. Массовый листопад, приводящий к полной потере листьев, происходит у растений умеренного пояса с наступлением зимы, а у растений субтропиков и тропиков в засушливый период.

У древесных растений умеренных широт подготовка к листопаду начинается задолго до наступления морозов. Перед листопадом листья меняют свою окраску с зелёной на жёлтую, оранжевую, красную и др. (рис. 77).

Это связано с тем, что к осени происходит старение листьев. В них накапливаются продукты обмена веществ, разрушается зелёный пигмент — хлорофилл. Более стойкие пигменты (красные, жёлтые и др.) сохраняются и придают листьям осеннюю окраску.

Сигналом к наступлению листопада служит сокращение длины светового дня. Установлено, что деревья вблизи уличных фонарей сохраняют листья дольше, чем растущие вдали от них.

Опадение листьев связано с появлением у основания листа отделительного слоя из легко разъединяющихся клеток (рис. 78). Поэтому даже при небольшом ветре листья опадают. Продолжительность листопада у различных растений неодинаковая. Берёза сбрасывает листья около двух месяцев, липа и дуб — в течение двух недель. Деревья, растущие в одиночку или небольшими группами, где они подвержены ветру, теряют листья раньше, чем растущие в лесу. Листопадные деревья в лесах умеренных широт стоят без листьев до восьми-девяти месяцев в году, во влажных тропических лесах — иногда всего несколько дней. Листопад играет важную роль в жизни леса — опавшие листья перегнивают и служат хорошим удобрением, предохраняют корни от вымерзания.

Но не все растения сбрасывают листья. Некоторые сохраняют их всю зиму. Это вечнозелёные кустарнички: брусника, вереск, клюква. Мелкие, плотные листья этих растений, слабо испаряющие воду, сохраняются под снегом. С зелёными листьями зимует большинство хвойных деревьев и кустарников. Некоторые травы, например земляника, клевер, чистотел, тоже уходят под снег зелёными.

Выделение у животных

У животных в процессе обмена веществ также образуются продукты жизнедеятельности. Поэтому каждое животное стремится сохранять нужные вещества и удалять вещества, которые ему не нужны, а иногда и опасны для него.

Животные по-разному избавляются от продуктов обмена. Например, амёба от излишков воды избавляется с помощью сократительной вакуоли (рис. 79), которая, периодически сокращаясь, выталкивает наружу находящуюся в ней жидкость. Всей поверхностью тела удаляются ненужные вещества у гидр, медуз.

У большинства многоклеточных животных функцию выделения выполняют специальные органы. Так, у дождевого червя есть канальцы — нефридии (от греч. нефрос — почка). У насекомых функцию выделения выполняют трубчатые выросты кишечника. У рыб продукты обмена удаляются через жабры и почки, которые являются основным органом выделения у позвоночных животных (рис. 80). У птиц и млекопитающих в процессе удаления ненужных веществ участвуют также лёгкие, кишечник, потовые железы.

Выделение. Почки. Листопад

Ответьте на вопросы

1. Где у растений накапливаются продукты обмена веществ? 2. Как происходит выделение вредных веществ у растений? 3. Какие продукты обмена веществ выделяются из организма позвоночных животных через лёгкие, кишечник, потовые железы?

1. Выпишите из текста параграфа новые понятия, найдите их определения в интернет-источниках, энциклопедических словарях.

2. Используя интернет-источники, научно-популярную литературу, подготовьте сообщение на тему «Значение процессов выделения у живых организмов».

Чем различается выделение веществ у растений и животных? Составьте сравнительную таблицу.

Источник

Физиология растений. Обмен веществ, питание, рост растений

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Физиология растений

Физиология растений изучает процессы, происходящие в организмах на раз­ных уровнях организации: биоценотическом, организменном, органном, кле­точном, субклеточном, молекулярном и даже субмолекулярном. В организме растения процессы всех уровней тесно взаимосвязаны. Изменение любого процесса отражается на всей жизнедеятельности организма. Сложность биоло­гических исследований заключается еще и в том, что организм неотделим от среды, и все физиологические процессы тесно взаимосвязаны с условиями среды.

Любой физиологический процесс должен рассматриваться как результат эволюции, в течение которой выработалась способность рас­тений к адаптации, приспособлению к изменяющимся условиям среды. Рас­тительный организм непрерывно развивается в течение всей своей жизни. Это развитие разделено на определенные этапы, характеризующиеся специфическими признаками. Именно поэтому необходимо рассматривать рас­тительный организм как непрерывно развивающуюся систему. В настоящее время применяют метод изучения таких систем от более простых к сложным уровням их организации. Этот подход позволяет проследить развитие от­дельных физиологических процессов в целом растительном организме.

В физиологии растений используется ве­гетационный метод, основанный на исследовании выращиваемых экспериментальных растений в различных условиях опыта, широко применяют также методы биофизики и биохимии, методы культивирования клеток и тканей. Физио­логия – теоретическая основа клеточной и генетической (генной) инже­нерии.

Основные разделы физиоло­гии растений посвящены таким процессам, как фотосинтез, транспорт веществ, дыхание, обмен веществ, почвенное питание, водный об­мен, рост и развитие. Все эти процессы тесно связаны друг с другом и в живом организме неразделимы.

5.1. Обмен веществ

Организмы представляют собой открытые энергетические системы, непрерывно обменивающиеся с окружающей средой веществом и энергией. Метаболизм, или обмен веществ лежит в основе всех проявлений жизни. Различают внешний обмен – поглощение и выделение ве­ществ, и внутренний обмен – химическое превращение этих веществ в клетке. Об­мен веществ и поддержание целостности структуры любой живой системы тре­буют затраты определенной энергии и, следовательно, ее поступления извне. Первичным источником энергии у автотрофных организмов служит либо свет (у фототрофов), либо различные химические реакции (у хемотрофов).

Существование большинства живых организмов на Земле невозможно без использования запасенной энергии. Такая энергия накапливается в виде энергии химических связей углеводов, жиров и белков. Передатчиками энергии при ее поступлении и расходовании служат высокоэнергетические соединения типа АТФ, то есть аденозинтри­фосфорной кислоты (аденозинтрифосфата).

В процессе обмена веществ строится тело растительного организма. Превращение чуже­родных веществ в вещества собственного тела получило название ассимиляции. Ассимиляция всегда сопряжена с расходованием энергии.

Распад веществ, образующих организм, до более простых соединений называется диссимиляцией. При диссимиляции энергия высвобождается. Ассимиляция и диссимиляция представляют собой взаимосвязанные процессы обмена веществ и энергии в живых системах.

Помимо обмена веществ, происходящих в клетках, сами клетки обмениваются веществами с окружающей средой. Этот обмен происходит либо в виде свободного (пассивного) транспорта за счет энергии передвигающихся частиц в ходе диффузии и осмоса, либо в виде активного транспорта, при котором затрачивается определенная часть энергии, образующейся при диссимиляции. Другая ее часть расходуется на синтез структурных компонентов клетки и поддержание ее гомеостаза. Главнейшую роль в регуляции обмена веществ между клеткой и средой играет цитоплазматическая мембрана (плазмалемма), а в пределах клетки – эндоплазматическая сеть.

Основное количество используемой организмом энергии высвобождается в результате диссимиляции. В про­цесс диссимиляции вовлекаются запасные вещества клетки и всего организма. Известно 2 основных процесса дисси­миляции: брожение и дыхание.

Брожение эволюционно более древний и энергетически менее выгодный процесс. В ходе брожения различные энергетически богатые субстраты (чаще всего углеводы) расщепляются до менее богатых соединений (спирта, масляной, молочной, уксусной кислот). Брожение характерно для многих прокариот и некоторых грибов. Например, процесс спиртового брожения суммарно можно выразить уравнением:

Из этого уравнения видно, что при сбраживании 1 молекулы сахара (глюкозы) образуется только 2 молекулы АТФ.

Дыхание энергетически более совер­шенно. В основе дыхания лежит биологи­ческое окисление в так называемой цепи дыхания, содержащей специальные фер­менты – оксиредуктазы. При полном окислении молекулы глюкозы до воды и диоксида углерода образуется 38 молекул АТФ:

Энергетически богатые субстраты в процессе дыхания окисляются до крайне бедных энергией соединений – воды и диоксида углерода. У большинства организмов в окислитель­но-восстановительных процессах активно используется кислород. Важнейшие этапы процесса дыхания у эукариотических ор­ганизмов осуществляются в митохон­дриях. Интенсивность дыхания меняется в ходе развития растения. Сухие покоя­щиеся семена дышат слабо. При набуха­нии и последующем прорастании семян интенсивность дыхания усиливается в сотни и тысячи раз. Самой высокой ин­тенсивностью дыхания отличаются бы­стро растущие органы и ткани. С оконча­нием периода активного роста растений дыхание их тканей ослабевает, что свя­зано с процессами старения прото­пласта.

Существует две формы ассимиляции: автотрофная и гетеротрофная. Автотрофная ассимиляция имеет огромное значение для живых существ, поскольку создает первичную продукцию, являю­щуюся основой всех цепей питания в эко­системах. При автотрофной ассимиляции неорганические вещества превращаются в органические. Этот процесс наиболее сложен. Гетеротрофная ассимиляция от­носительно проще, поскольку здесь про­исходит превращение одних органических веществ в другие. Она типична для боль­шинства животных, грибов и части про­кариот. Большинство растений и значительное число видов прокариот автотрофны.

Поскольку органические вещества представляют собой соединения углеро­да, решающее значение при создании первичной продукции имеет ассимиляция СО2. Это процесс восстановления, ко­торый ведет от максимально окисленного исходного вещества СО2 к менее окис­ленным продуктам, таким, как углеводы (СН2О)n. У растений и цианобактерий донором электронов, необходимых для восстановления углерода, служит вода, которая при отнятии электрона окисляет­ся до кислорода. Такое преобразование энергии света называется аэробным (кислородным) фотосинтезом.

Реже, у фотобактерий, донором электронов выступают молекулярная сера или сероводород, водород или некоторые органические вещества. Кислород при таком процессе не выделяется. Такое преобразование энергии света в хи­мическую энергию получило название анаэробного (бескислородного) фотосинтеза.

Относительно редко донорами элек­тронов при автотрофной ассимиляции выступают различные неорганические со­единения, например водород в метанообразующих бактериях, а энергия посту­пает в результате окисления сероводоро­да (Н2S), аммиака (NН3). Это процессы хемосинтеза. Солнечный свет для существования хемосинтезирующих организмов не нужен и все процессы мо­гут протекать анаэробно.

5.2. Ассимиляция углерода (фотосинтез)

Органическое вещество состоит на 45% из углерода. Поэтому вопрос об источнике питания организмов углеродом чрезвы­чайно важен. Все организмы делят на автотрофные и гетеротрофные. Автотрофные организмы характеризуются способностью в качестве источника углерода использовать его минеральные формы, то есть синтезировать орга­ническое вещество из неорганических соединений. Гетеротрофные организмы строят органическое вещество своего тела из уже имеющихся готовых органиче­ских соединений, то есть используют органические соединения как источник углерода. Для того, чтобы осуществить синтез органического вещества, необходима энергия. В зависимости от используемого соединения, а также от источников энергии, различают следующие основные типы питания углеродом и построения органических веществ.

Типы углеродного питания организмов

Тип питания Источник углерода Источник

водорода

Источник энергии
I. Гетеротрофный Органическое вещество Органическое вещество Энергия окисления органических

ве­ществ

П. Автотрофный

1. Фотосинтез

СО2 Н2О Энергия света
2.Бактериальный фотосинтез СО2 Н2S, Н2 и др. Энергия света
3. Хемосинтез СО2 Н2О, Н2S, Н2,

3

Энергия окисления неорганических ве­ществ

Из всех перечисленных типов питания углеродом фотосинтез зеленых расте­ний, при котором построение органических соединений идет за счет простых неорганических веществ (СО2 и Н2О) с использованием энергии солнечного све­та, занимает совершенно особое место. Общее уравнение фотосинтеза:

Фотосинтез – это процесс, при котором энергия солнечного света превра­щается в химическую энергию. В самом общем виде это можно представить сле­дующим образом: квант света (hv) поглощается хлорофиллом, молекула которого переходит в возбужденное состояние, при этом электрон переходит на более вы­сокий энергетический уровень. В клетках фотоавтотрофов в процессе эволю­ции выработался механизм, при котором энергия электрона, возвращающегося на основной энергетический уровень, превращается в химическую энергию.

В процессе фотосинтеза из простых неорганических соединений (СО2, Н2О) строятся различные органические вещества. В результате происходит перестройка химических связей: вместо связей С–О и Н–О возникают связи С–С и С–Н, в которых электроны занимают более высокий энергетический уровень. Таким обра­зом, богатые энергией органические вещества, которыми питаются и за счет кото­рых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Почти весь кислород атмосферы фотосинтетического происхождения. Процессы дыхания и горения стали воз­можны только после того, как возник фотосинтез. Возникли аэробные организмы, способные усваивать кислород. На поверхности Земли про­цессы приняли биогеохимический характер, произошло окисление соединений железа, серы, марганца. Изменился состав атмосферы: содержание СО2 и аммиака снизилось, а кислорода и азота возросло. Возникновение озонового эк­рана, который задерживает опасную для живых организмов ультрафиолетовую радиацию, также является следствием появления кислорода.

Для того, чтобы процесс фотосинтеза протекал нормально, к хлоропластам должен поступать СО2. Основным поставщиком служит атмосфера, где количество СО2 составляет 0,03%. Для образования 1 г сахара необходимо 1,47 г СО2 – такое количество содержится в 2500 л воздуха.

Углекислый газ поступает в лист растения через устьица. Некоторое количество СО2 поступает непосредственно через кутикулу. При закрытых устьицах диффузия СО2 в лист резко сокращается.

Наиболее примитивная организация фотосинтетиче­ского аппарата у зеленых бактерий и цианобактерий. У этих организмов функцию фотосинтеза выполняют внутрицитоплазматические мембраны или особые структуры – хлоросомы, фикобилисомы. У водорослей уже эволюционно возникли органеллы (хроматофоры), в которых сосредоточены пигменты, они разнообразны по форме (спиральные, лентовидные, пластинчатые, звездчатые). Высшие растения харак­теризуются вполне сформировавшимся типом пластид в форме диска или двоя­ковыпуклой линзы. Приняв форму диска, хлоропласты становятся универсаль­ным аппаратом фотосинтеза. Фотосинтез протекает в зеленых пластидах – хлоропластах. В лейкопластах синтезируется и отлагается в запасной крахмал, в хромопластах накапливаются каротиноиды.

Размер дисковидных хлоропластов высших растений колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку. Химический состав хлоропластов достаточно сложен и может быть охарактеризован следующими средними данными (% на сухую массу): белок – 35-55; липиды – 20-30; углеводы – 10; РНК – 2-3; ДНК – до 0,5; хлорофилл – 9; каротиноиды – 4,5.

В хлоропластах сосредоточены ферменты, при­нимающие участие в процессе фотосинтеза (окислительно-восстановительные, синтетазы, гидролазы). В хлоропластах, так же как и в митохондриях, имеется своя белоксинтезирующая система. Многие из ферментов, локализованных в хлоропластах, являются двухкомпонентными. Во многих случаях простетическая группа ферментов – это различные витамины. В хлоропластах сосредоточены многие витамины и их производные (витамины группы В, К, Е, D). В хлоропластах находится 80% Fe, 70% Zn, около 50% Сu от всего количества этих элементов в листе.

Хлоропласты окружены двойной мембраной. Толщина каждой мембраны 7,5-10 нм, расстояние между ними 10-30 нм. Внутреннее пространство хлоропластов заполнено бесцветным содержимым – стромой и пронизано мембранами. Мембраны, соединенные друг с другом, образуют плоские замкнутые полости (пузырьки) – тилакоиды (греч. «тилакоидес» – мешковидный). В хлоропластах содержатся тилакоиды двух типов. Короткие тилакоиды собраны в пачки и расположены друг над другом, напоминая стопку монет. Эти стопки называются гранами, а составляющие их тилакоиды – тилакоидами гран. Между гранами параллельно друг другу располагаются длин­ные тилакоиды – тилакоиды стромы. Между отдельными тилакоидами в стопках гран имеются узкие щели. Тилакоидные мембраны содержат большое количество белков, участвующих в фотосинтезе. В составе интегральных мембранных белков имеется много гидрофобных аминокислот. Это создает безводную среду и делает мембраны стабильнее.

Для того, чтобы световая энергия могла быть использована в процессе фотосинтеза, необходимо ее погло­щение фоторецепторами – пигментами. Фотосинтетические пигменты – это вещества, которые поглощают свет определенной длины волны. Не поглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеле­ные лучи, в основном, отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм.

Состав пигментов зависит от систематического положения группы организмов. У фотосинтезирующих бактерий и водорослей пигментный состав разнообразен (хлорофиллы, бактериохлорофиллы, бактерио­родопсин, каротиноиды, фикобилины). Их набор и соотношение специфичны для различных групп организмов. Пигменты, сконцен­трированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины.

Важнейшую роль в процессе фотосинтеза играют зеленые пигменты –хлорофиллы. Французские ученые П.Ж. Пелетье и Ж. Кавенту (1818) выделили из листьев зеленое вещество и назвали его хлорофиллом (от греч. «хлорос» – зеленый и «филлон» – лист). В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди групп организмов. У всех высших растений содержатся хлорофиллы a и b. Хлоро­филл c обнаружен в диатомовых водорослях, хлорофилл d – в красных водорос­лях. Кроме того, известны бактериохлорофиллы (а, b, c, d), содержащиеся в клетках фотосинтезирующих бактерий. В клетках зеленых бактерий имеются бактериохлорофиллы с и d, в клетках пурпурных бактерий – бактериохлорофиллы a и b. Основными пигментами, без которых фотосинтез не идет, являют­ся хлорофилл a для зеленых высших растений и водорослей, и бактериохлорофиллы – для бактерий.

Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего российского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения ве­ществ и выделил пигменты листа в чистом виде. Оказалось, что листья высших растений содер­жат хлорофилл a и хлорофилл b, а также каротиноиды (каротин, ксантофилл). Хлорофиллы, так же, как и каротиноиды, нерастворимы в воде, но хоро­шо растворимы в органических растворителях. Хлорофиллы a и b различаются по цвету: хлорофилл a имеет сине-зеленый оттенок, хлорофилл b – желто-зеленый. Содержание хлорофилла a в листе примерно в 3 раза больше по срав­нению с хлорофиллом b. По химическому строению хлорофиллы – сложные эфиры дикарбоновой ор­ганической кислоты – хлорофиллина и двух остатков спиртов – фитола (С20Н39ОН) и метилового (СН3ОН). Эмпирическая формула хлорофилла С55Н72О5N4Мg (рис. 5.1).

Органическая дикарбоновая кислота хлорофиллин представ­ляет собой азотсодержащее металлорганическое соединение, относящееся к магнийпорфиринам: (СООН) 2 = С32Н30ОN4Мg.

В хлорофилле водород карбоксильных групп замещен остатками двух спир­тов – метилового СН3ОН и фитола С20Н39ОН, поэтому хлорофилл является слож­ным эфиром.

Рис. 5.1. Структурная формула хлорофилла а.

Хлоро­филл b отличается тем, что содержит на два атома водорода меньше и на один атом кислорода больше (вместо группы СН3 группа СНО). В связи с этим, молекулярная масса хлорофилла a – 893 и хлорофилла b – 907.

В центре молекулы хлорофилла расположен атом магния, который соединен с четырьмя атомами азота пиррольных группировок. В пиррольных группиров­ках хлорофилла имеется система чередующихся двойных и простых связей. Это хромофорная группа хлорофилла, обусловливающая поглощение опреде­ленных лучей солнечного спектра и его окраску.

Еще К.А. Тимирязев обратил внимание на близость хи­мического строения двух важнейших пигментов: зеленого – хлорофилла листьев и красного – гемина крови. Действительно, если хлорофилл относится к магнийпорфиринам, то гемин – к железопорфиринам. Сходство это служит еще одним доказательством единства всего органического мира.

Молекула хлорофилла полярна, ее порфириновое ядро обладает гидрофиль­ными свойствами, а фитольный конец – гидрофобными. Это свойство молеку­лы хлорофилла обусловливает определенное расположение ее в мембранах хлоропластов. Порфириновая часть молекулы связана с белком, а фитольная цепь погружена в липидный слой.

Хлорофилл способен к избирательному поглощению света. Спектр поглощения определяется его способностью погло­щать свет определенной длины волны (определенного цвета). Для того чтобы получить спектр поглощения, К.А. Тимирязев пропускал луч света через рас­твор хлорофилла. Было по­казано, что хлорофилл в той же концентрации, как в листе, имеет две основные линии поглощения в красных и сине-фиолетовых лучах. При этом хло­рофилл a в растворе имеет максимум поглощения 429 и 660 нм, тогда как хло­рофилл b – при 453 и 642 нм (рис. 5.2).

Рис. 5.2. Спектры поглощения хлорофилла а и хлорофилла b

Наряду с зелеными пигментами в хлоропластах и хроматофорах содержатся пиг­менты, относящиеся к группе каротиноидов. Каротиноиды – это желтые и оран­жевые пигменты алифатического строения, производные изопрена. Кароти­ноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Кароти­ноиды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента – бета-каротин (оранжевый) С40Н56 и ксантофилл (желтый) С40Н56О2. Каротин со­стоит из 8 изопреновых остатков. При разрыве углеродной цепочки пополам и образовании на конце спиртовой группы каротин превращается в 2 молекулы витамина А.

Бета-каротин имеет два максимума поглощения, соответствующие длинам волн 482 и 452 нм. В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплек­сов с белками. Каротиноиды всегда присутствуют в хлоропластах, они принимают участие в процессе фотосинтеза. Поглощая световую энергию в определенных участках солнечного спектра, они пере­дают энергию этих лучей на молекулы хлорофилла. Тем самым, они способствуют использованию лучей, которые хлорофиллом не поглощаются. Физиологическая роль каротиноидов не ограничивается их участием в пе­редаче энергии на молекулы хлорофилла. Каротиноиды выполняют защитную функцию, предо­храняя молекулы хлорофил­ла от разрушения на свету в процессе фотоокисления (рис. 5.3).

Рис. 5.3. Структурная формула бета-каротина

Фикобилины – красные и синие пигменты, содержащиеся у цианобактерий и красных водорослей. В основе химическо­го строения фикобилинов лежат 4 пиррольные группировки. В отличие от хлорофилла у фикобилинов пиррольные группы расположены в виде открытой цепочки (рис. 5.4).

Рис. 5.4. Структурная формула хромофорной группы фикоэритринов

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин – это окисленный фикоцианин. Красные водоросли, в основном, содержат фикоэритрин, а цианобактерии – фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). В отличие от хлорофиллов и каротиноидов, расположенных в мембранах, фикобилины концентрируются в особых гранулах (фикобилисомах), тесно связанных с мембранами тилакоидов. Фикобилины поглощают лучи в зеленой и желтой частях солнечного спек­тра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495-565 нм, а фикоцианин – 550-615 нм. Сравнение спектров поглощения фи­кобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления ор­ганизмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация).

Фотосинтез – это сложный многоступенчатый окислительно-восстановитель­ный процесс, в котором происходит восстановление углекислого газа до углеводов и окисление воды до кислорода. В процессе фотосинтеза происходят не только реакции, идущие с использова­нием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующее доказательство существования темновых реакций в процессе фотосинтеза: фотосинтез ускоряется с повыше­нием температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Процесс фотосинтеза включает следующие этапы: 1) фотофизический; 2) фо­тохимический (световой); 3) ферментативный (темновой).

Согласно законам фотохимии, при поглощении кванта света атомом или мо­лекулой какого-либо вещества электрон переходит на другую, более удаленную орбиталь, то есть на более высокий энергетический уровень (рис. 5.5).

Рис. 5.5. Переходы между возбужденными состояниями хлорофилла после поглощения квантов синего и красного света

Наибольшей энергией обладает электрон, отдаленный от ядра атома и находящийся на достаточно большом расстоянии от него. Каждый электрон переходит на более высокий энер­гетический уровень под влиянием одного кванта света, если энергия этого кванта равна разнице между этими энергетическими уровнями. Все фотосинтезирующие организмы содержат какой-либо тип хлорофилла. В молекуле хлорофилла два уровня возбуждения. Именно с этим связано и то, что он имеет две основные линии поглощения. Первый уровень возбуждения обусловлен переходом на более высокий энергетический уровень электрона в системе сопряженных двойных связей, а второй – с возбуждением неспарен­ных электронов атомов азота и кислорода в порфириновом ядре. При поглоще­нии света электроны переходят в колебательное движение и перемещаются на следую­щие орбитали с более высоким энергетическим уровнем.

Наиболее высокий энергетический уровень – это второй синглетный уро­вень. Электрон переходит на него под влиянием сине-фиолетовых лучей, кванты которых содержат больше энергии.

Из возбужденного, первого синглетного и триплетного состояния молекула хлорофилла также может переходить в основное. При этом ее дезактивация (потеря энергии) может проходить:

1) путем выделения энергии в виде света (флуоресценция и фосфоресценция) или в виде тепла;

2) путем переноса энергии на другую молекулу пигмента;

3) путем затрачивания энергии на фотохимические процессы (потеря электрона и присоединение его к акцептору).

В любом из указанных случаев молекула пигмента дезактивируется и переходит на основной энергетический уровень.

Хлорофилл имеет две функции – поглоще­ние и передачу энергии. При этом основная часть молекул хлорофилла – более 90% всего хлорофилла хлоропластов входит в состав светособирающего комплек­са (ССК). Светособирающий комплекс выполняет роль антенны, которая эф­фективно поглощает свет и переносит энергию возбуждения к реакционному центру. Кроме большого числа (до нескольких сотен) молекул хлорофилла ССК содержит каротиноиды, а у некоторых водорослей и цианобактерий – фикобилины, которые увеличивают эффективность усвоения света.

В процес­се эволюции в растениях выработался механизм, позволяющий наиболее полно использовать кванты света, падающие на лист подобно каплям дождя. Механизм этот заключается в том, что энергия квантов света улавливается 200-400 моле­кулами хлорофилла и каротиноидами ССК и передается одной молекуле – реакционному центру. Расчеты показали, что в одном хло­ропласте до 1 млрд молекул хлорофилла. Теневыносливые рас­тения имеют, как правило, больший размер ССК по сравнению с растениями, растущими в условиях высокой освещенности. В реакционных центрах в результате фотохимических реакций образуются первичные восстановитель и окислитель. Они затем вызывают цепь последовательных окислительно-восста­новительных реакций. В итоге энергия запасается в виде восстановленного никотинамидаденин­динуклеотидфосфата (НАДФ•Н+) и аденозинтри­фосфата (АТФ), который синтезируется из аденозиндифосфата (АДФ) и неорганической фосфорной кислоты за счет реакции фо­тосинтетического фосфорилирования. Следовательно, НАДФ•Н+ и АТФ – основные продукты световой фазы фото­синтеза. Таким образом, в первичных процессах фотосинтеза, связанных с поглоще­нием молекулой хлорофилла кванта света, важную роль играют процессы пере­дачи энергии. Фотофизический этап фотосинтеза заключается в том, что кванты света поглощаются и переводят молекулы пигментов в возбужденное состояние. Затем эта энергия переносится на реакционный центр, осуществ­ляющий первичные фотохимические реакции: разделение зарядов. Дальнейшее превращение энергии света в химическую энергию проходит ряд этапов, начиная с окислительно-восстановительных превращений хлорофилла и включая как фотохимические (световые), так и энзиматические (темновые) реакции.

То есть фотосинтез включает преобра­зование энергии (явление, получившее на­звание светового процесса) и превращение вещества (темновой процесс). Световой процесс происходит в тилакоидах, темновой – в строме хлоропластов. Два процесса фотосинтеза выражаются отдельными уравнениями:

12Н2О =12Н2 + 6О2 + энергия АТФ (световой процесс).

Из этого уравнения видно, что кислород, выделяемый при фотосинтезе, образуется при разложении молекул воды. Кроме того, световая энергия используется на синтез аденозинтрифосфорной кислоты (АТФ) в ходе фотофосфорилирования.

В темновых реакциях используются продукты, накопленные в световой фазе. Суть темновых реакций сводится к фик­сации СО2 и включению его в молекулу сахара. Этот процесс получил название цикла Кальвина по имени американского биохимика, подробно изучившего после­довательность темновых реакций. Использование воды в качестве источника водорода для синтеза органических молекул дало растениям в процессе эволюции большое преимущество в силу повсеместного ее присутствия (вода является самым распространенным минералом на Земле).

Поскольку весь кислород фотосинтеза выделяется из воды, итоговое уравнение принимает вид:

Вода в правой части уравнения не подлежит сокращению, так как ее кислород имеет иное происхождение (из СО2). Следовательно, фотосинтез – это окислительно-восстановительный процесс, в котором вода окисляется до молекуляргого кислорода (О2), а углекислый газ восстанавливается водородом воды до углеводов.

По завершении каждого цикла образуется конечный продукт: одна молекула сахара, который ложится в основу первичного органического вещества, образующегося при фотосинтезе.

5.3. Минеральное питание

В тело растения многие химические элементы поступают в форме ионов, диссоциированных в водных растворах, через корень, с помощью кото­рого осуществляется минеральное, или почвенное, питание. Минеральное питание – это совокуп­ность процессов поглощения из почвы, передвижения и усвоения химических биогенных элементов, то есть элементов, не­обходимых для жизни растительных ор­ганизмов. Питательные вещества представляют собой доступные для растений минеральные соедине­ния, в которых содержатся эти элементы. В особенно больших количествах растениям необходимы макро­элементы N, S, P, K, Mg, Ca. Напротив, в крайне малых количествах необходимы такие микроэлементы, как B, Mn, Cu, Zn, Mo, Co.

Азот и сера – важные структурные эле­менты органических соединений, напри­мер белков и нуклеиновых кислот. При недостатке азота сокращается синтез бел­ков (в том числе ферментов), что проявляется в отставании роста, хлорозе (пожелтении) листьев. В большинстве природных экосистем именно азот находится в так называемом главном минимуме, то есть его недостаток ограничивает рост растений. Соединения фосфора играют главнейшую роль в энергетическом обмене. Калий, магний и кальций влияют на гидратацию коллоидов прото­пласта. При недостатке кальция особенно сильно повреждаются меристемы, при недостатке магния также возникает хлороз. Микроэлементы действуют как составные части ферментов.

Некоторые ионы являются антагони­стами. Известен антагонизм одно- и двухвалентных катионов (соответственно K, Na по отношению к Mg, Ca). Если при повышенных концентрациях ионы K и Na ядовиты для растения, то их токсичное действие возможно частично нейтрализо­вать добавлением в почву определенных доз ионов-антагонистов (Mg и Ca).

Механизм поступления ионов в корень сложен. Он связан с их адсорбцией и активным поглощением из почвы, при этом затрачивается энергия. Проникнув в корень, питательные веще­ства далее перемещаются по тканям рас­тения. Существуют два основных направле­ния перемещений больших количеств ве­ществ в растении: транспирационный (или восходящий) ток, то есть транспорт воды и растворенных в ней веществ от корня к побегам, и ток ассимилятов (нисходящий), то есть передвижение выработанных при фото­синтезе веществ из листьев к частям рас­тения (стеблям, корню, репродуктивным органам – цветкам, плодам, семенам). Для таких перемещений, по­лучивших название дальнего транспорта, есть особые проводящие ткани – ксилема и флоэма. Ближний транспорт к проводящим тканям и от них осуществляется через клетки других тканей тремя путями: по симпласту, то есть по соединенным между собой через плазмодесмы протопластам клеток, по апопласту, то есть по взаимосвя­занной системе клеточных стенок и меж­клетников, и по системе вакуолей. Симпласт служит для транспорта мине­ральных и органических веществ, апопласт – только для воды и растворенных в ней ионов минеральных соединений, система вакуолей – для воды.

Главный путь дальнего транспорта воды и ионов – транспи­рационный ток по ксиле­ме. Для ближнего транспорта в корне ис­пользуются симпласт и апопласт. Главным фильтрующим барьером на пути ионов в корне оказывается эндодер­ма с ее поясками Каспари. Через эндо­дерму ионы проникают по пропускным клеткам путем активного транспорта. Переход ионов в сосуды или трахеиды ксилемы может быть пас­сивным или активным. В стебле ионы активно извлекаются из сосудов и транспортируются в горизон­тальном направлении, в основном по паренхиме сердцевинных лучей. В листе из оконча­ний сосудов ионы в водных растворах выходят пассивно вме­сте с транспирационным током и в тече­ние вегетационного периода могут нака­пливаться в большом количестве по мере испарения воды. Часть накопленных ионов удаляется вместе с осенним листопадом (Са и Мg), другая часть отводится из листьев.

Основным двигателем транспирационного тока является транспирация, то есть выделение водяного пара в атмосферу, а также гуттация – выделение капельно жидкой воды водяными устьицами – гидатодами.

Основное количество воды испаряется листьями через устьица (устъичная транспирация). Пары воды по меж­клетникам мезофилла листа попадают в устьичные полости и через устьичные ще­ли испаряются в атмосферу. Движения устьиц (открывание и закрывание) регули­руют интенсивность транспирации. Малую часть воды растение теряет через кутикулу (кутикулярная транспирация), но ее интен­сивность в 10-20 раз ниже устьичной. В теле растения происходит непрерывный ток воды из почвы в атмос­феру. Присасывающее дей­ствие поднимает столб воды, заполняю­щий просветы сосудов со скоростью от 1 до 100 м/ч. Кроме того, при подъеме воды по сосудам важную роль играет сила сцепле­ния (когезия) между молекулами воды и адгезия – сила сцепления молекул воды со стенками сосудов ксилемы. Создаются условия, позволяющие удерживать в сосудах столб воды высо­той до 140 м. Высота самых больших де­ревьев, видно, не может превысить эту величину.

В процессе жизнедеятельности расте­ния накапливают первичные и вторичные метаболиты. Накопление метаболитов определяется тремя главными причина­ми: 1. необходимостью создания резерва энергетических и пластических веществ, 2. защиты от поедания животными и вне­дрения болезнетворных организмов и, наконец, 3. необходимостью концентрации отбросов (шлаков), подлежащих удалению из ор­ганизма.

К резервным энергетическим и пла­стическим веществам обычно относятся лишь первичные метаболиты (белки, жиры, углеводы). Перед листопадом или завяданием надземных частей многолет­них растений резервные вещества оттяги­ваются из листьев в подземные органы. У однолетников они концентрируются в семенах. Вторичные метаболиты (терпеноиды, алкалоиды, полифенольные со­единения) синтезируются в клетках раз­личных органов. Чаще всего они выпол­няют защитную роль, хотя могут вовле­каться вновь в основной обмен веществ (реутилизироваться). Изредка вторичные метаболиты оказываются в роли шлаков и удаляются при опаде тех частей растения, где они накапливаются, либо выделяются при разрыве соответствую­щих структур выделительных тканей. Распространенным отбросом в растении выступает оксалат кальция (щавелевокислый кальций), в ко­торый превращаются отходы как первич­ного, так и вторичного метаболизма. Обычно он удаляется при листопаде вместе с опадаю­щими листьями или отслаивающейся корой (коркой) стеблей.

Транспорт ассимилятов (дальний и ближний) происходит с затратой энергии по симпласту, то есть по системе протопластов живых клеток. Количество продуктов, образовавшихся за день в процессе фотосинтеза, пре­восходит массу хлоропластов во много раз. В этой связи большое значение имеет отток ассимилятов в другие части клетки, то есть внутриклеточный транспорт. Проникновение через мембрану хлоропластов крахмала, сахарозы и фосфорилированных гексоз затруднено. Наиболее легко через мембраны хлоропла­стов проникают триозофосфаты: фосфоглицериновый альдегид (ФГА), фосфодиоксиацетон (ФДА). Предполагается, что образую­щиеся в хлоропластах более сложные углеводы распадаются на триозофосфаты и в таком виде передвигаются в цитоплазму, где могут служить материалом для ресинтеза гексоз, сахарозы, крахмала. Благодаря указанным превращениям кон­центрация триозофосфатов в цитоплазме не снижается, что способствует их при­току по градиенту концентрации. Отток триозофосфатов сопровождается пере­носом ортофосфата внутрь хлоропласта с помощью переносчика (транспортные белки). Это позволяет сохранять в хлоропластах содержание фосфора, необ­ходимого для синтеза АТФ, на постоянном уровне. Наряду с превращением в сахарозу, поступившие в цитоплазму триозофосфаты участвуют в челночных превращениях. ФДА окисляется до фосфоглицериновой кислоты (3-ФГК) через дифосфоглицериновую кислоту (1,3-ДФГК). Это сопряжено с накоплением энергии в форме НАДН и АТФ. Именно этим путем АТФ и НАДН переносятся из хлоропласта в цитоплазму. При этом моле­кула 3-ФГК возвращается обратно в хлоропласт. Образовавшиеся в хлоропластах белки также распадаются и оттекают в цито­плазму в виде аминокислот. На свету проницаемость мембран хлоропластов по­вышается, что способствует оттоку из них различных веществ. Поступившие в цитоплазму органические соединения используются клеткой и направленно передвигаются к ситовидным труб­кам. В зависимости от густоты проводящих элементов в листе расстояния от хлоренхимной клетки, производящей ассимиляты, до ситовидных элементов флоэмы могут быть различны. Однако в среднем оно не превышает 3-4 клеток и составляет сотые доли миллиметра.

Межклеточный паренхимный транспорт может осуществляться как по симпласту, так и частично по клеточным стенкам. Скорость перемещения ассимилятов в паренхимных тканях равняется при­мерно 10-60 см/ч, это заметно выше скорости обычной диффузии. При пере­движении веществ по плазмодесмам такая скорость может достигаться лишь при большой дополнительной затрате энергии. Вместе с тем не у всех растений хо­рошо развиты плазмодесмы между клетками мезофилла и флоэмы. Показано, что клетки мезофилла листа обладают значительной секреторной способностью и легко выделяют сахарозу в свободное пространство. Сахароза на пути к ситовидным трубкам передвигается по апопласту. Соотношение апопластного или симпластного пути зависит от вида растения, транспортируемого сахара, типа сопутствующих клеток, числа плазмодесм. По апопласту главным образом передвигается саха­роза, при этом отмечается малое количество плазмодесм в клетках флоэмы. По симпласту транспортируется не только сахароза, но и другие сахара (рафиноза), а в клетках флоэмы наблюдается много плазмодесм. У одних растений преобладает апопластный транспорт, у других ­– симпластный.

Ассимиляты (глюкоза) из мест их образования проходят по симпласту или апопласту до клеток-спутниц и окружающих ситовидные трубки паренхимных клеток. В этих клетках сначала происходит пре­вращение глюкозы в сахарозу, которая затем в результате активного переноса (с затратой энергии и расходования АТФ) транспортируется в ситовидные трубки. Дальний транспорт сахарозы осуществляется по сито­видным трубкам. В местах потребления ассимилятов или отложения запасных веществ сахароза переходит из ситовидных трубок и достигает места назначения по симпластическому пути опять уже в виде глюкозы.

Растущие органы и ткани (листья, меристемы, корневые окончания, плоды) активно притягивают к себе ассимиляты из мест их хранения, а также из закончивших рост листьев.

5.4. Рост и развитие растений

В основе роста и развития целого организма и отдельной клетки лежит обмен веществ. В процессе жизни каждого организма происходят постоянные качественные и количественные изменения, прерываемые периодами покоя. Необратимое количественное увеличение структур, объема и массы живого тела и его частей получило название роста. Развитие – это качественные изменения организма. Рост и развитие тесно связаны между собой, оба процесса регулируются на клеточном уровне. Рост органов и всего организма слагается из роста его клеток. Основные этапы роста, а также и развития на клеточном уровне – деление клеток и их растяжение, то есть увеличение клеточного потомства и увеличение их размеров. В многоклеточных организмах одним из показателей роста будет увеличение числа клеток в результате клеточного деления. Растительная клетка способна к росту растяжением, чему содействуют особенности строения ее оболочки. Особенности роста различны у разных систематических групп организмов. У высших растений рост тесно связан с деятельностью меристем. Рост, так же как и развитие, контролируется фитогормонами – химическими соединениями, вырабатываемыми в малых количествах, но способных давать значительный физиологический эффект. Фитогормоны, выработанные в одной части растения, транспортируются в другую часть, вызывая там соответствующие изменения в зависимости от генной модели воспринимающей клетки.

Известны три класса фитогормонов, действующих, по преимуществу, как стимуляторы: ауксины (индолилуксусная, нафтилуксусная кислоты) (рис. 5.6), цитокинины (кинетин, зеатин) (рис. 5.7) и гиббереллины (С10 – гибериллин).

Два класса гормонов (абсцизовая кислота и этилен) оказывают тормозящее действие (рис. 5.8).

Заметное воздействие на рост и развитие растений оказывают ведущие факторы среды: свет, тепло и влага. Комплекс факторов и фитогормонов действует либо независимо, либо взаимодействуя друг с другом.

Рис. 5.7. Структурные формулы цитокининов

Рис. 5.8. Структурная формула абсцизовой кислоты

Интенсивность роста существенным образом связана с питанием растений, особенно с азотным и фосфорным. Типы роста различных органов определяются характером расположения меристем. Стебли и корни растут верхушками, они имеют апикальный рост. Зона нарастания листьев часто находится у их основания и они имеют базальный рост. Характер роста органа зависит от видовой специфичности. У злаков, например, рост стебля осуществляется у основания междоузлий, преобладает интеркалярный рост. Важная особенность роста растений – его ритмичность (чередование процессов интенсивного и замедленного роста). Она зависит не только от изменений внешних факторов среды, но и контролируется внутренними факторами (эндогенно), закрепленными в процессе эволюции. В целом рост растения складывается из четырех фаз: начальной, интенсивного роста, замедления роста и стационарного состояния. Это связано с особенностями различных стадий онтогенеза (индивидуального развития) растений. Так, переход растения к репродуктивному состоянию обычно сопровождается ослаблением активности меристем. Процессы роста могут прерываться продолжительными периодами торможения, наступление которых в северных широтах связано с концом лета и приближением зимы. Иногда у растений наблюдается как бы остановка роста – состояние покоя. Покой у растений – это такое физиологическое состояние, при котором резко снижаются скорость роста и интенсивность обмена веществ. Оно возникло в ходе эволюции как приспособление для переживания неблагоприятных условий среды в разные периоды жизненного цикла или сезона года. Покоящееся растение устойчиво к морозам, жаре, засухе. В состоянии покоя могут находиться растения (зимой, во время засухи), их семена, почки, клубни, корневища, луковицы, споры. Семена многих растений способны к длительному покою, обусловливающему их длительную сохранность в почве. Известен случай вызревания растения из семени одного из бобовых, пролежавшего в условиях вечной мерзлоты 10000 лет. В состоянии покоя находятся, например, клубни картофеля, благодаря чему они долго не прорастают. В понятие «развитие» вкладываются два смысла: индивидуальное развитие отдельного организма (онтогенез) и развитие организмов в ходе эволюции (филогенез). Физиология растений занимается изучением, главным образом, развития в онтогенезе.

Меристематические клетки тотипотентны (омнипо­тентны) – любая живая клетка может дать начало недифференцированным клеткам, способным развиваться самыми различными путями (рис. 5.9). Переход меристематической клетки к росту сопровождается появлением в ней вакуолей и их слиянием в центральную вакуоль, растяжением клеточных оболочек.

Рис. 5.9. Тотипотентность меристематической клетки. Производные клетки: 1 – паренхима, 2 – эпидерма, 3 – флоэма, 4 – членик сосуда ксилемы, 5 – трахеида ксилемы, 6 – склеренхимное волокно, 7 – идиобласт, 8 – колленхима, 9 – хлоренхима.

Наиболее важный момент в развитии клеток высшего растения – их дифференцировка, или специализация, то есть возникновение структурной и функциональной разнокачественности. В результате дифференцировки образуются специализированные клетки, присущие отдельным тканям. Дифференцировка осуществляется как во время растяжения, так и после окончания видимого роста клеток и определяется дифференциальной активностью генов. Дифференцировки и рост контролируется фитогормонами.

Развитие отдельных органов у растения получило название органогенеза. В целом цикле генетически обусловленное образование морфологических структур в онтогенезе называется морфогенезом. Внешние факторы, или факторы среды, также оказывают заметный эффект на рост и развитие. Свет оказывает глубокое влияние на внешнее строение растений. Свет влияет на дыхание и прорастание семян, образование корневищ и клубней, формирование цветков, на листопад, переход почек в состояние покоя. Растения, выращенные при отсутствии света (этиоли­рованные), обгоняют в росте растения, выросшие на свету. Интенсивное освещение нередко усиливает процессы дифференцировки.

Для каждого растения существует температурный оптимум роста и развития. Температурные минимумы роста и развития в среднем лежат в интервале 5-15 ° С, оптимумы – при 35° С, максимумы – в пределах 55° С. Низкая и высокая темпера-тура может нарушать покой семян, почек, сделать возможным их прорастание и распускание. Образование цветков – это переход из вегетативного состояния в генеративное. Индуцирование (ускорение) этого процесса холодом, называют яровизацией. Без процесса яровизации многие растения (свекла, репа, сельдерей, злаки) не способны к цветению.

Огромное значение для роста, прежде всего, в фазе растяжения, имеет обеспеченность водой. Недостаток воды приводит к мелкоклеточности, отставанию в росте.

Перемещение растений в пространстве имеет ограниченный характер. Для растений свойственно, прежде всего, вегетативное движение, связанное с особенностями роста, развития и обмена веществ. Одним из примеров движения служит фототропизм – направленная реакция искривления, вызываемая односторонним освещением: при росте побеги и черешки листьев искривляются в сторону света. Многие процессы обмена веществ, роста, развития и движения подвержены ритмическим колебаниям. Иногда эти колебания следуют смене дня и ночи (циркадные ритмы), иногда связаны с длиной дня (фотопериодизм). Пример ритмических движений – ночное закрывание или открывание цветков, опускание и продольное складывание листьев, раскрытых и приподнятых в дневное время. Такие движения связаны с неравномерным тургором. Эти процессы контро­лируются внутренней хронометрической системой – физиоло­гическими часами, по-видимому, существующими у всех эукариотов. У растений важнейшая функция физиологических часов – регистрация длины дня и, вместе с тем, времени года, что определяет переход к цветению или подготовку к зимнему покою (фотопериодизм). Виды, растущие на севере (севернее 60° с. ш.), должны быть преимущественно длиннодневными, поскольку их короткий вегетационный период совпадает с продолжительной длиной дня. В средних широтах (35-40° с. ш.) встречаются растения как длиннодневные, так и короткодневные. Здесь весеннее- или осеннецветущие виды относятся к короткодневным, а цветущие в разгар лета – к длиннодневным. Фотопериодизм имеет большое значение для характера распространения растений. В процессе естественного отбора у видов генетически закрепилась информация о длине дня своих местообитаний и об оптимальных сроках начала цветения. Даже у растений, размножающихся вегетативно, длина дня определяет соотношение между сезонными изменениями и накоплением запасных веществ. Виды, индифферентные к длине дня, являются потенциальными космополитами и нередко они цветут с ранней весны до поздней осени. Некоторые виды не могут выходить за пределы географической широты, определяющей их способность к цветению при соответствующей длине дня. Фотопериодизм важен и в практическом отношении, поскольку он определяет возможности продвижения южных растений на север, а северных – на юг. Одним из важных процессов, осуществляющихся в ходе индивидуального развития, является морфогенез. Морфогенез (от греческого «морфе» – вид, форма), то есть становление формы, образование морфологических структур и целостного организма в процессе индивидуального развития. Морфогенез растений обусловливается непрерывной активностью меристем, благодаря чему рост растения продолжается в течение всего онтогенеза, хотя и с разной интенсивностью. Процесс и результат морфогенеза определяются генотипом организма, взаимодействием с индивидуальными условиями развития и закономерностями развития, общими для всех живых существ (полярность, симметрия, морфогенетическая корреляция). Вследствие полярности, например, верхушечная меристема корня производит только корень, а апекс побега – стебель, листья и репродуктивные структуры (стробилы, цветки). С законами симметрии связана форма различных органов, листорасположение, актиноморфность или зигоморфность цветков. Действие корреляции, то есть взаимосвязи разных признаков в целостном организме, сказывается на характерном для каждого вида внешнем облике. Естественное нарушение корреляций в ходе морфогенеза приводит к различным тератологиям (уродствам) в строении организмов, а искусственное (путем прищипки, обрезки) – к получению растения с полезными для человека признаками.

В онтогенезе растение претерпевает возрастные изменения от эмбрионального состояния до генеративного (способного давать потомство путем образования специализированных клеток бесполого или полового размножения – спор, гамет), а затем – до глубокой старости.

Выделяют 2 группы цветковых растений по типу репродуктивных процессов: монокарпики и поликарпики. К первой группе (монокарпики) относят однолетники, часть многолетников (бамбуки), которые цветут и плодоносят только один раз в жизни. Ко второй группе (поликарпики) принадлежат многолетние травы, древесные и полудре­весные растения, способные плодоносить многократно. Онтогенез цветкового растения от возникновения зародыша в семени до естественной смерти особи подразделяют на возрастные периоды – этапы онтогенеза.

1. Латентный (скрытый) – покоящиеся семена.

2. Прегенеративный, или виргинильный, – от прорастания семени до первого цветения.

3. Генеративный – от первого до последнего цветения.

4. Сенильный, или старческий, – с момента потери способности к цветению до отмирания.

В пределах этих периодов различают этапы. В группе виргинильных растений выделяют проростки (P), недавно появившиеся из семян и сохраняющие зародышевые листья – семядоли и остатки эндосперма. Ювенильные растения (Yuv), несущие еще семядольные листья, и следующие за ними ювенильные листья – более мелкие и иногда по форме еще не вполне похожие на листья взрослых особей. Имматурными (Im) считают особи, уже потерявшие ювенильные черты, но еще не вполне оформившиеся, полувзрослые. В группе генеративных растений (G) по обилию цветущих побегов, их размерам, соотношению живых и мертвых частей корней и корневищ различают молодые (G1), средневзрослые зрелые (G2) и старые генеративные особи (G3). Для высших растений очень важны процессы органогенеза. Под органогенезом понимают формирование и развитие основных органов (корня, побегов, цветков). Каждому виду растений свойствен свой темп заложения и развития органов. У голосеменных формирование репродуктивных органов, ход оплодотворения и развития зародыша достигают одного года (у ели), а иногда и больше (у сосны). У некоторых высших споровых, например у равноспоровых плаунов, этот процесс длится около 12-15 лет. У покрытосеменных процессы споро- и гаметогенеза, оплодотворения и развития зародыша происходят интенсивно, особенно у эфемеров (однолетних растений засушливых районов) – за 3-4 недели.

Для цветковых растений установлен ряд этапов органогенеза. Главнейшие из них: дифференциация стебля, закладка листьев и побегов второго порядка; дифференциация соцветия; дифференциация цветка и образование археспория в семязачатках; мега- и микроспорогенез; мега- и микрогаметогенез; зиготогенез; формирование плода и семени.

В онтогенезе организмов закономерно повторяются некоторые этапы развития, свойственные их отдаленным предкам (явление рекапитуляции). Впервые естественнонаучное объяснение рекапитуляциям дал Ч. Дарвин (1859). В 1866 г. Э. Геккель фактам повторения этапов филогенеза в онтогенезе придал форму биогенетического закона. В основе биогенетического закона лежит индивидуальное развитие особи (онтогенез), которое, в той или иной степени, представляет короткое и быстрое повторение важнейших этапов эволюции вида (филогенеза). Имеется множество примеров проявления биогенетического закона в мире растений. Так, протонема мхов, образующаяся на первых этапах прорастания споры, напоминает водоросль и свидетельствует о том, что предками мхов были, вероятнее всего, зеленые водоросли. У многих папоротников первые листья имеют дихотомическое (вильчатое) жилкование, которое было свойственно листьям ископаемых форм древних папоротников из среднего и верхнего девона. Зигоморфные цветки покрытосеменных при своем заложении проходят актиноморфную стадию. Биогенетический закон используется для выяснения особенностей филогенеза.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Напишите где у растений накапливаются продукты обмена веществ и как происходит их удаление, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Напишите где у растений накапливаются продукты обмена веществ и как происходит их удаление", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Напишите где у растений накапливаются продукты обмена веществ и как происходит их удаление:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *