Главная » Правописание слов » Как написать функцию рандом

Слово Как написать функцию рандом - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

BestProg

Содержание

Поиск на других ресурсах:

Функция возвращает случайное целочисленное значение, которое лежит в пределах от 0 до 32767.

Пример.

Результат выполнения программы

Функция srand() из библиотеки stdlib.h предназначена для установки начальной точки, из которой происходит генерирование случайных чисел. Синтаксис объявления функции следующий:

Пример.

Результат выполнения программы

Как видно из примера в п. 2, последовательность случайных чисел изменилась. Если в функции srand() вместо числа 55 установить другое число, то будет получена другая последовательность. Однако, текст программы статический и при многократном запуске программы это число будет неизменным. В результате будет получаться одна и та же последовательность случайных чисел. Во избежание этого недостатка, нужно чтобы стартовое значение в функции srand() постоянно изменялось.

Если эти миллисекунды поместить в функцию srand() как показано ниже

Пример. В примере демонстрируется генерирование последовательности из двух случайных чисел. Каждый раз при запуске программы будет получена новая последовательность.

Результат выполнения программы

4. Как сгенерировать случайное целое число в заданных пределах? Пример
5. Заполнение двумерной матрицы случайными целыми числами в указанных пределах. Пример

Условие задачи. Дана двумерная матрица порядка n ( n столбцов, n строк) целых чисел. Найти наибольшее из значений элементов, которые размещены в закрашенной части матрицы. Значение элементов матрицы формируются случайным образом и находятся в пределах [-5; +5].

Текст программы следующий

6. Как сгенерировать случайное число с плавающей запятой в указанных пределах? Пример

Источник

Алгоритмы рандома

В этой статье вы увидите самые разнообразные велосипеды алгоритмы для генерации случайных чисел.

Про что статья

C++ rand

Первое что узнаёт начинающий программист С++ по теме получения рандома — функция rand, которая генерирует случайное число в пределах от 0 и RAND_MAX. Константа RAND_MAX описана в файле stdlib.h и равна 32’767, но этом может быть не так, например в Linux (см. коммент). Если же rand() в вашем компиляторе генерирует числа в пределах 32’767 (0x7FFF) и вы хотите получить случайное число большого размера, то код ниже можно рассматривать как вариант решения этой проблемы:

Реализация функции rand в старом C была проста и имела следующий вид:

Данная реализация имела не очень хорошее распределение чисел и ныне в C++ улучшена. Так же стандартная библиотека C++ предлагает дополнительные способы получения случайного числа, о которых ниже.

С++11 STL random

Данный сорт рандома появился в C++11 и представляет из себя следующий набор классов: minstd_rand, mt19937, ranlux, knuth_b и разные их вариации.

Чтобы последовательность случайных чисел не повторялась при каждом запуске программы, задают «зерно» псевдослучайного генератора в виде текущего времени или, в случае с некоторыми ретро (и не только) играми — интервалы между нажатиями клавиш с клавиатуры/джойстика. Библиотека random же предлагает использовать std::random_device для получения зерна лучше чем от time(NULL), однако в случае с компилятором MinGW в Windows функция практически не работает так как надо. До сих пор…

Некоторые из алгоритмов в STL random могут работать быстрее чем rand(), но давать менее качественную последовательность случайных чисел.

PRNG — Pseudo-random Numbers Generator

Можете считать это название — синонимом линейного конгруэнтного метода. PRNG алгоритмы похожи на реализацию rand в C и отличаются лишь константами.

PRNG алгоритмы быстро работают и легки в реализации на многих языках, но не обладают большим периодом.

XorShift

Алгоритм имеющий множество вариаций отличающихся друг от друга периодом и используемыми регистрами. Подробности и разновидности XorShift’а можете посмотреть на Википедии или Хабре. Приведу один из вариантов с последовательностью 2 в 128-й степени.

Данный генератор очень хорош тем, что в нём вообще нет операций деления и умножения — это может быть полезно на процессорах и микроконтроллерах в которых нету ассемблерных инструкций деления/умножения (PIC16, Z80, 6502).

8-bit рандом в эмуляторе z26

Z26 это эмулятор старенькой приставки Atari2600, в коде которого можно обнаружить рандом ориентированный на работу с 1-байтовыми регистрами.

Однажды мне пришлось сделать реализацию этого алгоритма для z80:

Компактный рандом для Z80 от Joe Wingbermuehle

Если вам интересно написание программ под машины с зилогом, то представляю вашему вниманию алгоритм от Joe Wingbermuehle (работает только на зилоге):

Генератор рандома в DOOM

В исходниках игры Дум есть такой интересный файл под названием m_random.c (см. код), в котором описана функция «табличного» рандома, то есть там вообще нет никаких формул и магии с битовыми сдвигами.

Приведу более компактный код наглядно показывающий работу этой функции.

Конечно же это ни какой не рандом и последовательность случайных чисел легко предугадать даже на уровне интуиции в процессе игры, но работает всё это крайне быстро. Если вам не особо важна криптографическая стойкость и вы хотите что-то быстро генерирующее «типа-рандом», то эта функция для вас. Кстати в Quake3 рандом выглядит просто — rand()&0x7FFF.

RDRAND

Некоторые современные процессоры способны генерировать случайные числа с помощью одной ассемблерной команды — RDRAND. Для использования этой функции в C++ вы можете вручную прописать нужные инструкции ассемблерными вставками или же в GCC подключить файл immintrin.h и выбрать любую из вариаций функции _rdrandXX_step, где XX означает число бит в регистре и может быть равно 16, 32 или 64.

Концовка

Класс std::minstd_rand из библиотеки STL random работает быстрее обыкновенного rand() и может стать его альтернативной заменой, если вас не особо волнует длинна периода в minstd. Возможны различия в работе этих функций в Windows и Unix’ах.

Источник

Урок №71. Генерация случайных чисел

Обновл. 13 Сен 2021 |

Возможность генерировать случайные числа очень полезна в некоторых видах программ, в частности, в играх, программах научного или статистического моделирования. Возьмем, к примеру, игры без рандомных (или «случайных») событий — монстры всегда будут атаковать вас одинаково, вы всегда будете находить одни и те же предметы/артефакты, макеты темниц и подземелий никогда не будут меняться и т.д. В общем, сюжет такой игры не очень интересен и вряд ли вы будете в нее долго играть.

Генератор псевдослучайных чисел

Так как же генерировать случайные числа? В реальной жизни мы часто бросаем монетку (орел/решка), кости или перетасовываем карты. Эти события включают в себя так много физических переменных (например, сила тяжести, трение, сопротивление воздуха и т.д.), что они становятся почти невозможными для прогнозирования/контроля и выдают результаты, которые во всех смыслах являются случайными.

Следовательно, компьютеры неспособны генерировать случайные числа. Вместо этого они могут имитировать случайность, что достигается с помощью генераторов псевдослучайных чисел.

Генератор псевдослучайных чисел (сокр. «ГПСЧ») — это программа, которая принимает стартовое/начальное значение и выполняет с ним определенные математические операции, чтобы конвертировать его в другое число, которое совсем не связано со стартовым. Затем программа использует новое сгенерированное значение и выполняет с ним те же математические операции, что и с начальным числом, чтобы конвертировать его в еще одно новое число — третье, которое не связано ни с первым, ни со вторым. Применяя этот алгоритм к последнему сгенерированному значению, программа может генерировать целый ряд новых чисел, которые будут казаться случайными (при условии, что алгоритм будет достаточно сложным).

На самом деле, написать простой ГПСЧ не так уж и сложно. Вот небольшая программа, которая генерирует 100 рандомных чисел:

Результат выполнения программы:

18256 4675 32406 6217 27484
975 28066 13525 25960 2907
12974 26465 13684 10471 19898
12269 23424 23667 16070 3705
22412 9727 1490 773 10648
1419 8926 3473 20900 31511
5610 11805 20400 1699 24310
25769 9148 10287 32258 12597
19912 24507 29454 5057 19924
11591 15898 3149 9184 4307
24358 6873 20460 2655 22066
16229 20984 6635 9022 31217
10756 16247 17994 19069 22544
31491 16214 12553 23580 19599
3682 11669 13864 13339 13166
16417 26164 12711 11898 26797
27712 17715 32646 10041 18508
28351 9874 31685 31320 11851
9118 26193 612 983 30378
26333 24688 28515 8118 32105

Каждое число кажется случайным по отношению к предыдущему. Главный недостаток этого алгоритма — его примитивность.

Функции srand() и rand()

Языки Cи и C++ имеют свои собственные встроенные генераторы случайных чисел. Они реализованы в двух отдельных функциях, которые находятся в заголовочном файле cstdlib:

Функция srand() устанавливает передаваемое пользователем значение в качестве стартового. srand() следует вызывать только один раз — в начале программы (обычно в верхней части функции main()).

Функция rand() генерирует следующее случайное число в последовательности. Оно будет находиться в диапазоне от 0 до RAND_MAX (константа в cstdlib, значением которой является 32767 ).

Вот пример программы, в которой используются обе эти функции:

Результат выполнения программы:

14867 24680 8872 25432 21865
17285 18997 10570 16397 30572
22339 31508 1553 124 779
6687 23563 5754 25989 16527
19808 10702 13777 28696 8131
18671 27093 8979 4088 31260
31016 5073 19422 23885 18222
3631 19884 10857 30853 32618
31867 24505 14240 14389 13829
13469 11442 5385 9644 9341
11470 189 3262 9731 25676
1366 24567 25223 110 24352
24135 459 7236 17918 1238
24041 29900 24830 1094 13193
10334 6192 6968 8791 1351
14521 31249 4533 11189 7971
5118 19884 1747 23543 309
28713 24884 1678 22142 27238
6261 12836 5618 17062 13342
14638 7427 23077 25546 21229

Стартовое число и последовательности в ГПСЧ

Если вы запустите вышеприведенную программу (генерация случайных чисел) несколько раз, то заметите, что в результатах всегда находятся одни и те же числа! Это означает, что, хотя каждое число в последовательности кажется случайным относительно предыдущего, вся последовательность не является случайной вообще! А это, в свою очередь, означает, что наша программа полностью предсказуема (одни и те же значения ввода приводят к одним и тем же значениям вывода). Бывают случаи, когда это может быть полезно или даже желательно (например, если вы хотите, чтобы научная симуляция повторялась, или вы пытаетесь исправить причины сбоя вашего генератора случайных подземелий в игре).

Но в большинстве случаев это не совсем то, что нам нужно. Если вы пишете игру типа Hi-Lo (где у пользователя есть 10 попыток угадать число, а компьютер говорит ему, насколько его предположения близки или далеки от реального числа), вы бы не хотели, чтобы программа выбирала одни и те же числа каждый раз. Поэтому давайте более подробно рассмотрим, почему это происходит и как это можно исправить.

Чтобы это исправить нам нужен способ выбрать стартовое число, которое не будет фиксированным значением. Первое, что приходит на ум — использовать рандомное число! Это хорошая мысль, но если нам нужно случайное число для генерации случайных чисел, то это какой-то замкнутый круг, вам не кажется? Оказывается, нам не обязательно использовать случайное стартовое число — нам просто нужно выбрать что-то, что будет меняться каждый раз при новом запуске программы. Затем мы сможем использовать наш ГПСЧ для генерации уникальной последовательности рандомных чисел исходя из уникального стартового числа.

Общепринятым решением является использование системных часов. Каждый раз, при запуске программы, время будет другое. Если мы будем использовать значение времени в качестве стартового числа, то наша программа всегда будет генерировать разную последовательность чисел при каждом новом запуске!

Вот вышеприведенная программа, но уже с использованием функции time() в качестве стартового числа:

Теперь наша программа будет генерировать разные последовательности случайных чисел! Попробуйте сами.

Генерация случайных чисел в заданном диапазоне

Вот небольшая функция, которая конвертирует результат функции rand() в нужный нам диапазон значений:

Какой ГПСЧ является хорошим?

Как мы уже говорили, генератор случайных чисел, который мы написали выше, не является очень хорошим. Сейчас рассмотрим почему.

Хороший ГПСЧ должен иметь ряд свойств:

Свойство №1: ГПСЧ должен генерировать каждое новое число с примерно одинаковой вероятностью. Это называется равномерностью распределения. Если некоторые числа генерируются чаще, чем другие, то результат программы, использующей ГПСЧ, будет предсказуем! Например, предположим, вы пытаетесь написать генератор случайных предметов для игры. Вы выбираете случайное число от 1 до 10, и, если результатом будет 10, игрок получит крутой предмет вместо среднего. Шансы должны быть 1 к 10. Но, если ваш ГПСЧ неравномерно генерирует числа, например, десятки генерируются чаще, чем должны, то ваши игроки будут получать более редкие предметы чаще, чем предполагалось, и сложность, и интерес к такой игре автоматически уменьшаются.

Создать ГПСЧ, который бы генерировал равномерные результаты — сложно, и это одна из главных причин, по которым ГПСЧ, который мы написали в начале этого урока, не является очень хорошим.

Свойство №3: ГПСЧ должен иметь хорошее диапазонное распределение чисел. Это означает, что маленькие, средние и большие числа должны возвращаться случайным образом. ГПСЧ, который возвращает все маленькие числа, а затем все большие — предсказуем и приведет к предсказуемым результатам.

Свойство №4: Период циклического повторения значений ГПСЧ должен быть максимально большим. Все ГПСЧ являются циклическими, т.е. в какой-то момент последовательность генерируемых чисел начнет повторяться. Как упоминалось ранее, ГПСЧ являются детерминированными, и с одним значением ввода мы получим одно и то же значение вывода. Подумайте, что произойдет, когда ГПСЧ сгенерирует число, которое уже ранее было сгенерировано. С этого момента начнется дублирование последовательности чисел между первым и последующим появлением этого числа. Длина этой последовательности называется периодом.

Например, вот представлены первые 100 чисел, сгенерированные ГПСЧ с плохой периодичностью:

112 9 130 97 64
31 152 119 86 53
20 141 108 75 42
9 130 97 64 31
152 119 86 53 20
141 108 75 42 9
130 97 64 31 152
119 86 53 20 141
108 75 42 9 130
97 64 31 152 119
86 53 20 141 108
75 42 9 130 97
64 31 152 119 86
53 20 141 108 75
42 9 130 97 64
31 152 119 86 53
20 141 108 75 42
9 130 97 64 31
152 119 86 53 20
141 108 75 42 9

Хороший ГПСЧ должен иметь длинный период для всех стартовых чисел. Разработка алгоритма, соответствующего этому требованию, может быть чрезвычайно сложной — большинство ГПСЧ имеют длинные периоды для одних начальных чисел и короткие для других. Если пользователь выбрал начальное число, которое имеет короткий период, то и результаты будут соответствующие.

Несмотря на сложность разработки алгоритмов, отвечающих всем этим критериям, в этой области было проведено большое количество исследований, так как разные ГПСЧ активно используются в важных отраслях науки.

Почему rand() является посредственным ГПСЧ?

Алгоритм, используемый для реализации rand(), может варьироваться в разных компиляторах, и, соответственно, результаты также могут быть разными. В большинстве реализаций rand() используется Линейный Конгруэнтный Метод (сокр. «ЛКМ»). Если вы посмотрите на первый пример в этом уроке, то заметите, что там, на самом деле, используется ЛКМ, хоть и с намеренно подобранными плохими константами.

Одним из основных недостатков функции rand() является то, что RAND_MAX обычно устанавливается как 32767 (15-битное значение). Это означает, что если вы захотите сгенерировать числа в более широком диапазоне (например, 32-битные целые числа), то функция rand() не подойдет. Кроме того, она не подойдет, если вы захотите сгенерировать случайные числа типа с плавающей запятой (например, между 0.0 и 1.0 ), что часто используется в статистическом моделировании. Наконец, функция rand() имеет относительно короткий период по сравнению с другими алгоритмами.

Тем не менее, этот алгоритм отлично подходит для изучения программирования и для программ, в которых высококлассный ГПСЧ не является необходимостью.

Для приложений, где требуется высококлассный ГПСЧ, рекомендуется использовать алгоритм Вихрь Мерсенна (англ. «Mersenne Twister»), который генерирует отличные результаты и относительно прост в использовании.

Отладка программ, использующих случайные числа

Программы, которые используют случайные числа, трудно отлаживать, так как при каждом запуске такой программы мы будем получать разные результаты. А чтобы успешно проводить отладку программ, нужно удостовериться, что наша программа выполняется одинаково при каждом её запуске. Таким образом, мы сможем быстро узнать расположение ошибки и изолировать этот участок кода.

Поэтому, проводя отладку программы, полезно использовать в качестве стартового числа (с использованием функции srand()) определенное значение (например, 0 ), которое вызовет ошибочное поведение программы. Это будет гарантией того, что наша программа каждый раз генерирует одни и те же результаты (что значительно облегчит процесс отладки). После того, как мы найдем и исправим ошибку, мы сможем снова использовать системные часы для генерации рандомных результатов.

Рандомные числа в C++11

В C++11 добавили тонну нового функционала для генерации случайных чисел, включая алгоритм Вихрь Мерсенна, а также разные виды генераторов случайных чисел (например, равномерные, генератор Poisson и пр.). Доступ к ним осуществляется через подключение заголовочного файла random. Вот пример генерации случайных чисел в C++11 с использованием Вихря Мерсенна:

Источник

Генерация случайных чисел в языке Си

Пожалуйста, приостановите работу AdBlock на этом сайте.

Иногда может возникнуть необходимость в генерации случайных чисел. Простой пример.

Пример: Определение победителя в конкурсе репостов.

Как получить число от игрока, вам уже известно. А вот как заставить компьютер загадать случайное число? В этом уроке вы этому научитесь.

Функция rand().

Давайте посмотрим на эту функцию в действии. Запустим следующий код:

Должно получиться что-то вроде этого.

Рис.1 Пять случайных чисел, сгенерированных функцийе rand

Ограничить случайные числа сверху.

Рис.2 Пять случайных чисел меньше 100

Ограничить числа снизу.

Задать границы функции rand сверху и снизу.

Попробуйте запустить эту программу. Удивлены?

Согласно этой формуле перепишем нашу последнюю программу:

Рис.3 Случайные числа из диапазона [80;100]

Но прежде ещё немного полезной информации. Запустите последнюю программу три раза подряд и записывайте себе случайные числа, которые она генерирует. Заметили?

Функция srand().

Скомпилируйте и запустите несколько раз вот эту программу:

Теперь поменяйте аргумент функции srand() на другое число (надеюсь вы ещё не забыли, что такое аргумент функции?) и снова скомпилируйте и запустите программу. Последовательность чисел должна измениться. Как только мы меняем аргумент в функции srand – меняется и последовательность. Не очень практично, не правда ли? Чтобы изменить последовательность, нужно перекомпилировать программу. Вот бы это число туда подставлялось автоматически.

Практика

Решите предложенные задачи. Для удобства работы сразу переходите в полноэкранный режим

Исследовательские задачи для хакеров:

Источник

Способы использования Math.random() в JavaScript

Math.random() — это один из API JavaScript. Это — функция, которая возвращает случайные числа. Диапазон возвращаемых чисел представлен значениями от 0 (включая 0, то есть, она может вернуть 0) до 1 (не включая 1, то есть — единицу она вернуть не может).

Эта функция чрезвычайно полезна при разработке игр, при описании анимаций, при создании наборов данных с использованием метода случайного выбора. Случайные числа применяются в процедуральном искусстве, при создании текстов и во многих других случаях. Эти числа можно использовать в веб-разработке, в мобильной разработке, в обычных настольных приложениях.

Вот пример, размещённый на CodePen, позволяющий генерировать случайные числа в диапазоне от 0 до 1 и от 0 до 10 (включая 0 и 10).

Пример использования Math.random()

Анимация

Вот пример, в котором Math.random() используется для создания анимации.

Музыка, сгенерированная компьютером

Вот проект, демонстрирующий пример использования Math.random() в деле создания компьютерной музыки.

Здесь за основу взята традиционная мелодия «Auld Lang Syne» («Старое доброе время»). Программа строит итоговую композицию, обрабатывая исходный материал по особому алгоритму, основанному на использовании случайных чисел.

Вывод случайного изображения

В данном проекте возможности генератора случайных чисел используются для выбора изображений.

Вывод изображения, выбранного случайным образом

Случайный фоновый цвет

Здесь можно найти проект, в котором показан случайный выбор фонового цвета.

Случайный выбор фонового цвета

Самое интересное происходит в этом фрагменте кода:

Эта функция возвращает случайное целочисленное значение из заданного диапазона. Она используется для настройки характеристик цветов, таких, как тон, насыщенность и светлота.

Если вас интересует вопрос случайного генерирования цветов — взгляните на этот материал.

Процедуральное искусство

Вот проект, в котором случайные числа используются для создания изображения по заданным правилам.

При построении этих необычных кривых функция Math.random() используется дважды. Первый раз — для выбора цветов градиента. Второй раз — для настройки максимального радиуса кривых. Это — прекрасный пример того, как при каждом запуске процесса создания изображения получается что-то новое.

Случайный выбор слов из заранее созданного списка

Здесь можно найти программу, которая выводит на экран слова, случайным образом выбираемые из заранее созданного массива.

Случайный выбор слов

Вот код, который используется для выбора слова:

Этот пример очень похож на тот, где на странице выводится изображение, выбранное случайным образом. Пожалуй, разработка подобной программы хорошо подойдёт новичкам, которые хотят попрактиковаться в работе с веб-технологиями.

Генератор ключей API

Вот проект, в котором случайные числа используются для создания ключей API.

Система для создания случайных ключей API

Это — пример использования генератора случайных чисел, имеющий практическое применение в разработке реальных приложений. Здесь для создания UUID (Universally Unique IDentifier, универсальный уникальный идентификатор) программа генерирует 16 случайных чисел. Такой UUID можно использовать в роли ключа для доступа к некоему API.

Вывод фрагментов текста с использованием переходов, сформированных случайными символами

Здесь можно найти проект, в котором случайные числа используются при выводе текстов.

Переходы между фразами, сформированные с использованием генератора случайных чисел

Игра «Камень, ножницы, бумага»

Здесь можно найти реализацию игры «Камень, ножницы, бумага».

Камень, ножницы, бумага

В этой классической игре Math.random() используется в качестве основы игровой логики. Компьютер делает ход, случайным образом выбирая один из трёх вариантов действий.

Генератор надёжных паролей

Вот программа, представляющая собой генератор надёжных паролей.

Генератор надёжных паролей

Заметки о Math.random()

▍По-настоящему ли случайны числа, которые выдаёт Math.random()?

Они, так сказать, не совсем случайны. Эта функция возвращает псевдослучайные числа. Алгоритм, на котором она основана, называется «генератор псевдослучайных чисел» (Pseudo-Random Number Generator, PRNG). Это значит, что последовательность выдаваемых им чисел может быть, в определённых условиях, воспроизведена.

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать функцию рандом, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать функцию рандом", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать функцию рандом:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *