Главная » Правописание слов » Как написать систему уравнений в mathcad

Слово Как написать систему уравнений в mathcad - однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):


Морфемный разбор слова:

Однокоренные слова к слову:

Как написать систему уравнений в mathcad

Уравнение и системы уравнений в математическом пакете Mathcad в символьном виде решаются с использованием специального оператора символьного решения solve в сочетании со знаком символьного равенства, который может быть также введен с рабочей панели “Символика”. Например:

Аналогичные действия при решении уравнений в Mathcad можно выполнить, используя меню “Символика”. Для этого необходимо записать вычисляемое выражение. Затем выделить переменную, относительно которой решается уравнение, войти в меню Символика, Переменная, Разрешить. Например:

В случае, если необходимо упростить полученный результат, используется знак равенства [=]. Например:

При решении некоторых уравнений, результат включает большое количество символов. Mathcad сохраняет его в буфере, а на дисплей выводитcя сообщение: “This array has more elements than can be displayed at one time. Try using the “submatrix” function” – “Этот массив содержит больше элементов, чем может быть отображено одновременно. Попытайтесь использовать функцию “submatrix””. В этом случае рекомендуется использовать численное решение. Или, в случае необходимости, символьное решение может быть выведено и отображено на дисплее.

Символьное решение может быть получено с использованием блока given … find. В этом случае при записи уравнения для связи его левой и правой части использует символ логического равенства “=” с панели инструментов Boolean, например:

Аналогичным способом решаются системы уравнений в символьном виде. Ниже приводятся примеры решения систем уравнений в символьном виде различными способами. При использовании оператора символьного решения solve в сочетании со знаком символьного равенства система уравнений должна быть задана в виде вектора, который вводится вместо левого маркера оператора solve, а перечень переменных, относительно которых решается система, вместо правого маркера. Например:

Пример использования блока given…find для решения системы уравнений:

Источник

Решение нелинейных уравнений и систем уравнений в пакете MathCAD

Решение нелинейных уравнений

Вычисление корней численными методами включает два основных этапа:

· уточнение корней до заданной точности.

Рассмотрим эти два этапа подробно.

Отделение корней нелинейного уравнения

Пример. Дано алгебраическое уравнение

.

Определить интервалы локализации корней этого уравнения.

Пример. Дано алгебраическое уравнение

.

Определить интервалы локализации корней этого уравнения.

Уточнение корней нелинейного уравнения

Для уточнения корня используются специальные вычислительные методы такие, как метод деления отрезка пополам, метод хорд, метод касательных (метод Ньютона) и многие другие.

Функция root . В MathCAD для уточнения корней любого нелинейного уравнения (не обязательно только алгебраического) введена функция root , которая может иметь два или четыре аргумента, т.е. или , где – имя функции или арифметическое выражение, соответствующее решаемому нелинейному уравнению, – скалярная переменная, относительно которой решается уравнение, – границы интервала локализации корня.

Пример. Используя функцию , найти все три корня уравнения , включая и два комплексных.

Заметим, что для вычисления всех трех корней использовался прием понижения порядка алгебраического уравнения, рассмотренный в п. 8.1.1. ¨

Функция root с двумя аргументами требует задания (до обращения к функции) переменной начального значения корня из интервала локализации.

Пример 8.1.5. Используя функцию root , вычислить изменения корня нелинейного уравнения при изменении коэффициента а от 1 до 10 с шагом 1.

Ограничения содержат равенства или неравенства, которым должен удовлетворять искомый корень.

Функция Find уточняет корень уравнения, вызов этой функции имеет вид Find ( x ), где x – переменная, по которой уточняется корень. Если корня уравнения на заданном интервале не существует, то следует вызвать функцию Minerr ( x ), которая возвращает приближенное значение корня.

Для выбора алгоритма уточнения корня необходимо щелкнуть правой кнопкой мыши на имени функции Find ( x ) и в появившемся контекстном меню (см. рисунок) выбрать подходящий алгоритм.

Аналогично можно задать алгоритм решения и для функции Minerr ( x ).

Использование численных методов в функциях Find ( x ), Minerr ( x ) требует перед блоком Given задать начальные значения переменным, по которым осуществляется поиск корней уравнения.

Пример. Используя блок Given , вычислите корень уравнения в интервале отделения .

Решение систем уравнений

В зависимости от того, какие функции входят в систему уравнений, можно выделить два класса систем:

· алгебраические системы уравнений;

· трансцендентные системы уравнений.

Среди алгебраических систем уравнений особое место занимают системы линейных алгебраических уравнений (СЛАУ).

Системы линейных алгебраических уравнений

Системой линейных алгебраических уравнений (СЛАУ) называется система вида:

В матричном виде систему можно записать как

,

где – матрица размерности , – вектор с проекциями.

Для вычисления решения СЛАУ следует использовать функцию lsolve , обращение к которой имеет вид: lsolve (А, b ), где А – матрица системы, – вектор правой части.

Решение систем нелинейных уравнений

MathCAD дает возможность находить решение системы уравнений численными методами, при этом максимальное число уравнений в MathCAD 2001 i доведено до 200.

Для решения системы уравнений необходимо выполнить следующие этапы.

Задание начального приближения для всех неизвестных, входящих в систему уравнений. При небольшом числе неизвестных этот этап можно выполнить графически, как показано в примере.

Пример. Дана система уравнений:

Определить начальные приближения для решений этой системы.

Видно, что система имеет два решения: для первого решения в качестве начального приближения может быть принята точка (-2, 2), а для второго решения – точка (5, 20). ¨

Следующие выражения недопустимы внутри блока решения:

· ограничения со знаком ¹ ;

· дискретная переменная или выражения, содержащие дискретную переменную в любой форме;

· блоки решения уравнений не могут быть вложены друг в друга, каждый блок может иметь только одно ключевое слово Given и имя функции Find (или Minerr ).

Пример. Используя блок Given , вычислить все решения системы предыдущего примера. Выполнить проверку найденных решений.

Источник

Как написать систему уравнений в mathcad

Электронный курс по MathCAD

Экспоненциальные и логарифмические уравнения.

Определение: Уравнение, в котором независимая переменная входит в аргумент хотя бы одной экспоненциальной (логарифмической) функции, называется экспоненциальным (логарифмическим) уравнением.

Способ решения с помощью Mathcad такой же, как и для других типов уравнений.

Экспоненциальные уравнения во множестве действительных чисел не создают дополнительных сложностей в том смысле, что их область определения совпадает со множеством действительных чисел, а логарифмирование представляет собой инъективное отображение.

Если при решении экспоненциального уравнения возникают проблемы,их,как правило,можно устранить посредством вспомогательного логарифмирования. В крайнем случае можно обратиться к численным методам (См. Решение нелинейных уравнений и систем).

Значительно больше сложностей возникает при решении логарифмических уравнений. Область определения этих уравнений, если рассматривать их во множестве действительных чисел, как правило, не совпадает с действительной числовой прямой. MathCAD рассматривает логарифмические уравнения в комплексной области, т.е. не учитывая область определения.

В данном примере показано, что MathCAD иногда находит решения (и даже действительные) там, где их быть не может (проблемы с комплексным логарифмом). Но нахождение области определения позволяет придти к верному решению.

Насколько полезным может быть предварительное нахождение области определения, показывает следующий пример. Область определения пустое множество, следовательно,множество решений L=<>.

Тригонометрические уравнения.

Сложность решения уравнений, содержащих тригонометрические функции, состоит прежде всего в том, что функций, обратных к тригонометрическим, не существует, а существуют лишь бесконечно многозначные обратные отображения. Поэтому прихдится мириться с тем, что любое вычислительное средство сможет найти только главное значение обратного выражения. Чтобы получить множество решений, необходимо самостоятельно воссоздать побочные значения обратного отображения.

Данный пример показывает, что вышеуказанное ограничение не играет особой роли при решении уравнений с помощью MathCAD. Поскольку синус и косинус определены для всех значений аргумента, вопрос об области определения при решении уравнений, содержащих только эти тригонометрические функции, как правило, отпадает.

Поскольку остается неясным, какое именно из значений обратного отображения MathCAD рассматривает в качестве главного при решении уравнений, оказывается сложно получить еще одно значение, отстоящее от главного менее чем на период; тем самым задача была бы решена с точностью до периода. В подобных ситуациях на выручку приходит построение графиков.

Данный пример демонстрирует пределы возможности MathCAD. Решение в лоб не дает никаких результатов.

Неравенства.

MathCAD обладает достаточно мощными возможностями для решения неравенств. Эти возможности уже использовались нами ренее для нахождения области определения уравнений, содержащих функции, определенные не во всех точках числовой прямой.

Неравенства, как и уравнения, можно решать либо с использованием символьного знака равенства, либо, отметив переменную следм курсора, посредством выполнения команды Solve (Вычислить) подменю Variable (Переменные) меню Symbolics (Символы). В разных неравенствах могут быть использованы различные знаки неравенств.

Знаки «больше» и «меньше» могут вводиться непосредственно с клавиатуры. Все остальные знаки можно вводить при помощи панели Evaluation (Вычисления), либо сочетанием клавиш.

Линейные неравенства и неравенства с дробно-рациональными функциями не составляют сложности для MathCAD.

Неравенства с параметрами удобно анализировать с использованием знака символьного равенства, если значения параметра ограничены некоторыми условиями.

При решении неравенств, содержащих трансцендентные функции,возможности MathCAD ограничены.

В данном примере MathCAD не может решить неравенство при использовании символьного процессора. На помощь приходят графики и функция численного решения уравнений root. Для работы этой функции необходимо задать начальное приближение для искомого решения.

Системы линейных уравнений.

Для численного решения линейных систем уравнений в MathCAD имеется специальная функция:

Эквивалентной для MathCAD формой представления систем линейных уравнений является матричная форма. Представленные таким образом системы можно решать как символьно, так и численно.

Хорошей альтернативой решению систем в матричной форме является так называемый solve block (Блок решения). Он удобен тем, что при его использовании уравнения записываются не в матричной, а в обычной форме, а также тем, что позволяет решать нелинейные уравнения и вводить ограничительные условия для определяемого решения. Блок решения применяется как для нахождения численного решения, так и для отыскания решеня в символьном виде.

Синтаксис Блока решения:

Последовательность действий при численном решении:

При символьном решении не надо вводить начальные значения, а после ключевого слова Find(v1,v2. vn) вместо знака равенства следует ввести символьный знак равенства (при помощи комбинации [Ctrl+.] или соответствующей пиктограммы панели Evaluation).

Существует еще одно важное отличие между блоком решения и использованием матричных операций. Если определитель матрицы коэффициентов равен нулю, матричные методы оказываются непригодными. В таком случае система не имеет решений или разрешима неоднозначно. Если же применить блок решения, MathCAD распознает неоднозначность и выдает решение в параметрической форме.

Нелинейные уравнения и системы уравнений.

Эта функция возвращает значение переменной с указанным уровнем точности, при котором выражение дает 0.

Функция реализует вычисления итерационным методом, причем можно задать начальное значение переменной. Это особенно полезно, если возможно несколько решений. Тогда выбор решения определяется выбором начального значения переменной. Пример ниже иллюстрирует технику применения функции root для вычисления корней кубического полинома.

Как известно, кубическое уравнение обязательно имеет хотя бы один кубический корень х1. Он найден вначале функцией root. Два других корня могут оказаться и комплексными. Функция root может отыскивать и такие корни. Для поиска второго корня, х2, первый исключается делением F(x) на (х-х1). Соответственно для поиска третьего корня, хЗ, F(X) делится еще и на (х-х2).

Функция поиска корней многочлена polyroots

Для поиска корней обычного полинома р(х) степени п MathCAD содержит очень удобную функцию:

Она возвращает вектор корней многочлена (полинома) степени п, коэффициенты которого находятся в векторе V, имеющем длину равную п+1.

Заметим, что корни полинома могут быть как вещественными, так и комплексными числами. Не рекомендуется пользоваться этой функцией, если степень полинома выше пятой-шестой, так как тогда трудно получить малую погрешность вычисления корней.

При решении систем нелинейных уравнений используется специальный вычислительный блок, открываемый служебным словом — директивой Given — и имеющий следующую структуру:

Given
Уравнения
Ограничительные условия
Выражения с функциями Find и Minerr

В блоке используется одна из следующих двух функций:

Между этими функциями существуют принципиальные различия. Первая функция используется, когда решение реально существует (хотя и не является аналитическим). Вторая функция пытается найти максимальное приближение даже к несуществующему решению путем минимизации среднеквадратичной погрешности решения.

При использовании функции Minerr для решения систем нелинейных уравнений надо проявлять известную осторожность и обязательно предусматривать проверку решений. Нередки случаи, когда решения могут оказаться ошибочными, чаще всего из-за того, что из нескольких корней система предлагает нереальный (или не представляющий интереса) корень. Полезно как можно точнее указывать начальные приближения к решению.

Источник

Как написать систему уравнений в mathcad

Глава 4. Решение уравнений

4.4 Решение систем уравнений

Для решения систем уравнений нужно использовать вычислительный блок следующего вида:

1. Начальные приближения для всех переменных.

2. Ключевое слово Given (Дано).

3. Система уравнений (при записи уравнений надо использовать жирный знак равенства– клавиши Ctrl +=, так как это не знак присвоения значения, а оператор отношения).

4. Ограничения на поиск решения в виде неравенств, если они есть.

Результат расчета – вектор решения системы. Вычислительный блок позволяет решать системы, содержащие от 1 до 200 уравнений.

начальное приближение

Given

проверка

Рис. 4. 9 Решение системы уравнений с помощью функции Find

– Linear (Линейный метод) – метод касательной;

– Nonlinear (Нелинейный метод);

– Quadratic (Квадратичный метод).

Нелинейных методов три:

1) Conjiugate Gradient (Метод сопряженных градиентов);

2) Quasi – Newton (Квази – ньютоновский метод);

3) Levenberg – Marquart (Метод Левенберга).

Кроме выбора самого метода, нажав кнопку Advanced Options (Дополнительные параметры), можно выбрать:

1) оценку производной конечными разностями ( Derivate Estimation ):

– Forward (Вперед) – правая двухточечная схема;

– Central (Центральная) – трехточечная симметричная схема;

2) оценку переменной ( Variable Estimation ):

– Tangent (Касательная) – касательная – прямая линия,

– Quadratic (Квадратичная) – касательная – парабола;

3) проверку линейности:

начальные приближения

Given

один из параметров делаем константой, другой варьируем

для графика

для таблицы

Рис. 4. 10 Решение системы уравнений с переменными параметрами

Меняем оба параметра a и b

Диапазон изменения координат a и b задан на странице

Quick Plot Data окна форматирования

Рис. 4. 11 поверхность решений системы уравнений

Mathcad позволяет решать системы уравнений не только в скалярной, но и в матричной форме, при этом начальные условия и ограничения задаются в виде векторов (рис. 4.12).

Решение системы алгебраических линейных уравнений

А*Х=В путем обращения матрицы А

начальное приближение

Given

Функция root с матрицами работать не может

Рис. 4. 12 Решение системы уравнений в матричном виде

Источник

Теперь вы знаете какие однокоренные слова подходят к слову Как написать систему уравнений в mathcad, а так же какой у него корень, приставка, суффикс и окончание. Вы можете дополнить список однокоренных слов к слову "Как написать систему уравнений в mathcad", предложив свой вариант в комментариях ниже, а также выразить свое несогласие проведенным с морфемным разбором.

Какие вы еще знаете однокоренные слова к слову Как написать систему уравнений в mathcad:



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Онлайн словарь однокоренных слов русского языка.