Площади фигур. Площадь параллелограмма.
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, полностью принадлежащей
одной плоскости. Если фигуру можно разбить на конечное множество единичных квадратов, то площадь
будет равна числу этих квадратов.
Параллелограмм это четырехугольник, у которого противоположные стороны попарно параллельны и
лежат на параллельных прямых.
Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус
Воспользуйтесь нашим калькулятором для расчета площади параллелограмма.
Для расчета площади других фигур воспользуйтесь этим калькулятором: площади фигур.
Формулы для определения площади параллелограмма:
1. Площадь параллелограмма по длине стороны и высоте.
Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону
2. Площадь параллелограмма по двум сторонам и углу между ними.
Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.
3. Площадь параллелограмма по двум диагоналям и углу между ними.
d1, d2 — длины диагоналей параллелограмма,
Теорема (о площади параллелограмма). Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.
Доказательство:
Пусть
1) Проведем высоту к прямой, содержащей сторону параллелограмма.
2) (как соответственные углы при параллельных прямых и и секущей Поэтому (по гипотенузе и острому углу).
3) Параллелограмм состоит из трапеции и треугольника а прямоугольник — из трапеции и треугольника Так как треугольники и равны, то равны и их площади, а потому равными будут площади параллелограмма и прямоугольника
4) Но и поэтому Следовательно,
Заметим, что если основание высоты — точка -совпадает с точкой или лежит на продолжении стороны то доказательство теоремы будет аналогичным.
В общем виде формулу площади параллелограмма можно записать так:
где — сторона параллелограмма, — высота, к ней проведенная.
Пример:
Докажите, что высоты ромба, проведенные из одной вершины, равны.
Доказательство:
Пусть — данный ромб, и — его высоты (рис. 232).
Ромб является параллелограммом, поэтому Но а значит
Пример:
Решение:
1) Пусть — данный параллелограмм, и — его высоты (рис. 232),
2) По условию поэтому
3) Пусть см, тогда см.
4) Так как по формуле площади параллелограмма или имеем уравнение: То есть откуда (см).
5) Тогда
Ответ. 40
Площадь параллелограмма
С помощью формулы площади прямоугольника можно доказать формулу площади произвольного параллелограмма.
Теорема (формула площади параллелограмма)
Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне:
где — сторона параллелограмма, — проведенная к ней высота.
Пусть — данный параллелограмм, не являющийся прямоугольником (рис. 145, а). Проведем его высоты и докажем, что Четырехугольник является прямоугольной трапецией, площадь которой можно вычислить двумя способами — как сумму площадей параллелограмма и треугольника или как сумму площадей прямоугольника и треугольника Треугольники равны по гипотенузе и катету как противолежащие стороны параллелограмма, как расстояния между параллельными прямыми). Следовательно, эти треугольники имеют равные площади. Тогда площади параллелограмма и прямоугольника также равны, т.е. Случаи, когда точка не является внутренней точкой отрезка (рис. 145, б, в), рассмотрите самостоятельно.
Пример:
Площадь параллелограмма равна а длины его высот — 3 см и 4 см. Найдите периметр параллелограмма.
Решение:
Пусть дан параллелограмм с площадью и высотами (рис. 146).
Поскольку
Следовательно, периметр параллелограмма равен
Ответ: 42 см.
Решая приведенную задачу, можно заметить интересную закономерность: чем больше сторона параллелограмма, тем меньше проведенная к ней высота.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Как найти площадь параллелограмма — три основных формулы
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта статья на еще одну математическую тему. Мы расскажем, как правильно посчитать площадь параллелограмма. Эту тему подробно изучают только в 8-м классе. И это говорит, что она не такая простая.
Но для начала давайте все-таки напомним, какая фигура называется параллелограммом.
Параллелограмм – это разновидность четырехугольников, у которого противоположные стороны параллельны друг другу.
Классический параллелограмм выглядит вот так:
Впервые об этой фигуре подробно написал древнегреческий математик Евклид в своем известном произведении «Начала». Он же рассказал и о двух частных случаях параллелограмма, которые нам сегодня хорошо известны.
Это и прямоугольник, у которого противоположные стороны не только параллельны друг другу, но и пересекаются под прямым углом. И квадрат, у которого помимо параллельности противоположных сторон, все стороны еще и равны между собой.
И наконец, не лишним будет вспомнить, что подразумевается под термином «площадь».
Площадь геометрической фигуры – это размер плоскости, которая находится внутри сторон фигуры.
Ну а теперь объединим эти два понятия и расскажем, как надо считать площадь параллелограмма.
Формулы для расчета площади параллелограмма
Есть три основных формулы для вычисления площади параллелограмма:
Теперь о каждом из этих способов подробнее.
Как найти площадь параллелограмма, если известны сторона и высота
Возьмем для примера такой параллелограмм:
В нем указаны две высоты – BE и BF. Напомню, что высота — это отрезок, который опускается из вершины на противоположную сторону под прямым углом.
В данном случае площадь считается весьма просто. Надо всего лишь перемножить длину высоты и длину стороны, к которой она проведена.
И то же самое касается, если знать длины стороны DC и высоты BF. Тогда для вычисления площади достаточно их перемножить.
Кстати, у этой формулы есть весьма интересное доказательство. Так как у параллелограмма противоположные стороны параллельны и равны, то можно взять треугольник ABE и переставить его к стороне CD. Вот так это будет выглядеть:
В результате мы получим прямоугольник, у которого нам известны длины обеих сторон (высота параллелограмма превратилась в одну из сторон). А как известно, площадь прямоугольника равна произведению его сторон.
Формула площади параллелограмма, если известны стороны и угол
Площадь параллелограмма можно посчитать, если известны длины обеих его сторон и величина острого угла между ними.
Собственно, этот способ вытекает из предыдущего, Просто по исходным данным нужно вычислить высоту параллелограмма, а уже потом по ней посчитать площадь.
Согласно тригонометрии, синус острого угла в прямоугольнике равен отношению противоположного катета к гипотенузе. В нашем примере таким катетом является высота, а гипотенузой сторона «а». И получается:
Соответственно, чтобы посчитать значение высоты надо:
И наша конечная формула для расчета площади будет выглядеть следующим образом:
Как найти площадь параллелограмма через диагонали
Этот способ используется крайне редко, но знать его все равно нужно. Во всяком случае, на экзаменах у школьников такие примеры вполне могут встретиться.
В данном случае для вывода формулы используются весьма непростые математические вычисления. И мы не будем ими вас загружать. А просто покажем конечный результат:
Соответственно, здесь d1 и d2 – длины диагоналей, а y – острый угол между ними.
Вот и все, что мы хотели рассказать о вычислении площади параллелограмма.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Ну самую простую (основание на высоту) знают все, а вот остальные вспомнить было трудно.
Я еще со школы помню, что можно через окружность вписанную и сторону вычислить. Это будет 2 * на сторону * на радиус окружности. Также есть еще возможность найти по радиусу и углу между сторонами, но эти формулы используются редко, но для каких-то задач возможно пригодятся.
Площадь параллелограмма
Площадь параллелограмма можно найти по стороне и проведённой к этой стороне высоте, по двум сторонам и углу, по диагоналям и углу между ними.
I. Площадь параллелограмма по стороне и высоте
Площадь параллелограмма равна произведению стороны параллелограмма на высоту, проведённую к этой стороне.
Формула для нахождения площади параллелограмма через сторону и высоту:
Например,площадь параллелограмма ABCD через высоту можно найти по одной из формул:
II. Площадь параллелограмма по сторонам и углу
Площадь параллелограмма равна произведению его сторон на синус угла между ними.
Формула для нахождения площади параллелограмма через стороны и угол:
Например, площадь параллелограмма ABCD
По свойствам параллелограмма, противоположные углы параллелограмма равны:
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, то есть,
А так как синус тупого угла равен синусу смежного ему угла, то
Таким образом, площадь параллелограмма можно найти как произведение его двух любых не смежных сторон на синус любого угла.
III. Площадь параллелограмма по диагоналям
Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.
Формула площади параллелограмма через диагонали:
Например, площадь параллелограмма ABCD
то в качестве угла между диагоналями можно брать любой угол — как острый, так и тупой (прямой — в ромбе и квадрате).
Нахождение площади параллелограмма: формула и примеры
Параллелограмм – это геометрическая фигура; четырехугольник, у которого противоположные стороны равны и параллельны.
Формула вычисления площади
По длине стороны и высоте
Площадь параллелограмма (S) равняется произведению длины его стороны и высоты, проведенной к ней:
S = a ⋅ h
По двум сторонам и углу между ними
Площадь параллелограмма находится путем умножения длин его обеих сторон и синуса угла между ними:
S = a ⋅ b ⋅ sin α
По двум диагоналям и углу между ними
Площадь параллелограмма равна одной второй произведения длин его диагоналей, умноженного на синус угла между ними:
Примеры задач
Задание 1
Найдите площадь параллелограмма, если длина его стороны равняется 7 см, а высоты – 4 см.
Задание 2
Найдите площадь параллелограмма, если его стороны равны 6 и 8 см, а угол между ними – 30°.
Задание 3
Найдите площадь параллелограмма с диагоналями, равными 4 и 6 см. Угол между ними составляет 90°.